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Abstrakt

Cílem této práce je poskytnout automaticky generovanou informaci potřeb-
nou pro detekci, diagnostiku a případnou mitigaci DDoS útoků popisu-
jící normální provoz v dané počítačové síti. Výsledný síťový profil, ex-
trahovaný z informací o síťových tocích, se skládá z efektivně zakódované
množiny entit, které historicky komunikovaly s profilovanou sítí a očeká-
vanými úrovněmi provozu procházející danou sítí.

V první části práce je do širšího kontextu metod DDoS útoků a je-
jich mitigace zasazena mitigační metoda History-based IP filtering, která je
základem navrženého subsystému agregujícího historii komunikace na síti.
Další část práce se zabývá různými možnostmi ukládání historie síťové ko-
munikace se zaměřením na paměťovou efektivitu. Na základě získaných
informací jsou pro tento účel zvoleny Bloomovy filtry. V následující části
je vyhodnocena přesnost několika modelů vhodných pro predikci očeká-
vané úrovně provozu ve sledované síti. Na základě vyhodnocení je vybrán
prediktivní model Prophet.

Výsledný informační systém, detailně popsaný ve třetí části, se skládá
ze dvou podsystémů, které poskytují obě složky informací o síťovém pro-
filu: škálovatelnou implementaci metody History-based IP filtering užívající
Bloomovi filtry jako jediné úložiště dat a prediktivní subsystém využívající
model Prophet.

Výsledky měření výkonnosti, popsané v poslední kapitole, ukazují, že
implementovaný systém je vhodný i pro nasazení v sítích komunikujících
s více než sto miliony odlišnými síťovými entitami, což výrazně převyšuje
původní požadavky.

Klíčová slova Mitigace DDoS, History-based IP filtering, Analýza časových
řad, Probabilistické datové struktury, Bloomův filtr, Prophet
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Abstract

The aim of this thesis is to provide information in a fully automated manner
describing the normal operation of a computer network needed for detection,
diagnosis and possible mitigation of DDoS attacks. The resulting network
profile, extracted from network flow information, consists of an efficiently
encoded set of entities which historically communicated with the profiled
network and expected levels of traffic flowing through the network.

In the first part, History-based IP filtering, the basis of our historical in-
formation subsystem, is introduced and set into a broader context of DDoS
attack and mitigation methods. The next part explores various storage
options of network communication history with focus on space efficiency.
Based on the obtained information, Bloom filters are chosen as the most
suitable option. The focus is then shifted towards performance evaluation
of forecasting models suitable for prediction of expected levels of traffic on
the monitored network. The Prophet forecasting model is selected as the
most suitable option due to its precision and robustness.

The resulting information system, described in the third part, is com-
posed of two main subsystems providing the two network profile information
components: a novel and scalable implementation of History-based IP filter-
ing using Bloom filters as the sole data storage and a forecasting subsystem
using the Prophet model.

The results of a performance measurement, described in the last chapter,
show that the implemented system is suitable even for deployments on
networks communicating with over a hundred million of distinct network
entities which vastly exceeds requirements for its intended deployment.

Keywords DDoS mitigation, History-based IP filtering, Time series fore-
cast, Probabilistic data structures, Bloom filter, Prophet
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Introduction

Distributed Denial of Service (DDoS) attacks are lead with an intent to dis-
rupt services provided by an attack victim or otherwise prevent the normal
use of the service for legitimate users by exhausting resources of the target
system or even a network connecting this service to the clients.

The DDoS attacks are still among the most prevalent security issues
plaguing the Internet today and even with technology advancements made
in the last decade, an efficient defense against them proves to be complex
and expensive. As shown by Majkowski in [2], this is mostly because there
are many different types of attacks, unrelently evolving in reaction to new
mitigation techniques each of which can possibly addresses only a small
portion of the attack types.

The ever-changing nature and shape of the attacks represents a signif-
icant topic of interest of many security researchers and companies, how-
ever, the decentralized nature of the Internet suggests, that finding perfect
method to distinguish between a legitimate and a malicious traffic is not
possible. Therefore, the current approaches to the mitigation of DDoS at-
tacks are based on heuristics.

The primary objective of this thesis is to design a system that provides
information in a fully automated manner describing the normal operation of
a computer network which can be used for detection, diagnosis and possible
mitigation of DDoS attacks. This information, which we call network profile,
can be split into two parts. The first part gives an information about
expected levels of traffic based on its long term observations. The second
part of the profile consists of set of entities which historically communicated
with the profiled network.

Chapter 1 of this thesis introduces problematics of DDoS attacks and
related mitigation techniques. Notably, ideas behind the History-based IP
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Introduction

filtering mitigation method, which gives the basis and reasoning for the
second part of the network profile, are explored in depth. At the end of the
chapter, security tools developed by CESNET a.l.e which are essential for
completing objectives of this thesis are shortly introduced.

In the second chapter, requirements for the network profile format and
contents are specified, followed by a discussion of operational requirements
for the system providing this information. We then explore various storage
options of the network communication history with focus on space efficiency
end perform evaluation of forecasting models suitable for prediction of ex-
pected levels of traffic on the monitored network. The proposed system
design and its limitations are described at the end of the chapter.

In the third chapter, we present purpose and implementation overview
of each separate module of the information system together with specifics
of the designed interfaces. We also discuss some of the more interesting
technical details of the solution.

The performance evaluation methodology of each of the modules de-
signed and implemented in this thesis and its results are presented in the
last chapter.
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Chapter 1
Background Information

In this chapter, we provide a short introduction to a problematics of DDoS
attacks and their taxonomy. We then proceed with a summary and main
ideas of History-based IP Filtering, the basis of our system.

In the last part of this chapter, we introduce the Network Measurements
Analysis (NEMEA) system which we heavily rely on in this thesis.

1.1 DDoS Attacks
The Denial of Service cyber-attack category is lead with an intention to
disrupt provided services by an attack victim or prevent the normal use of
the service for legitimate users. With the rise of the Internet, a Denial of
Service attack has become a synonym for an attack lead through a computer
network. A Distributed Denial of Service attack is its subcategory that is
executed from many network sources at once.

According to Zargar et al. [3], the reasons for attacking and disrupting
the target service are commonly financial gain or revenge, but can be also
motivated by ideological or political believes. A trend occurring in the last
few years is to divert attention from additional system compromise.

Given the recent attacks reported by GitHub [4] and Cloudflare [2] it
is apparent that the problematics of DDoS attacks are fare from resolved
and require further attention. As Mirkovic et al. noted in [5], the current
state of DDoS protection merely reacts to the new attack techniques and
trends as they appear, but fail to address the core reason that enables this
kind of attack; the Internet design is optimized to forward packets from
source to a destination on best effort basis as efficiently as possible which
shifts the complexity to end hosts and exposes them to any misbehaving
party. This is further supported by the decentralized nature of the Internet
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1. Background Information

spanning many independent entities each with its set of policies and the
resulting complicated control and accountability enforcement. Mirkovic also
notes, that the proneness of the Internet to DDoS attacks is given by its
overall security. This claim is supported by the relatively recent attacks
originating from the Mirai botnet composed of poorly secured IoT devices
[6] and Memcrashed amplification attacks using combination of weakness
in memcached protocol and insecure service configuration [7].

As Mirkovic et al. described in [5], DDoS attack has traditionally two
phases. First the attacker needs to recruit the network devices that will
participate in the actual DoS attack. This is commonly done by remotely
exploiting weaknesses or configuration errors and gaining code execution
capabilities on the targeted devices, but can also consist of gaining other
ways to manipulate otherwise secure devices to perform undesirable but
legitimate action like requesting a network resource or sending a response
to a request with spoofed address. The recruited devices, also called bots,
are then formed into a botnet by employing, usually covert, method of
communication and command relay between the bots and the attacker. The
methods of communication are usually designed in a way that makes it
exceedingly hard to find other nodes in a botnet in case one of the bots is
discovered.

Once the preparations are in place the actual DDoS attack on a victim
specified by the attacker is executed. This is the second stage of the attack
and is commonly carried out multiple times on many victims by a single
botnet.

The DDoS taxonomy introduced in [5] is one possible way to classify
DDoS attacks based on exploited weakness, victim type, attack source ad-
dress validity and its spoofing technique, communication with device in the
botnet, attack rate dynamics and few other classes describing the botnet.
As noted by Mirkovic et al., it is usually not sufficient to describe a DDoS
attack by one class only and that the introduced taxonomy should serve as
a common framework to coarsely classify an attack. However, in this the-
sis we focus on a flooding type DDoS attacks in wired networked systems
which are further classified by Zargar et al. in [3]:

L3/L4 flooding attacks
Network/transport level DDoS attacks have been mostly launched us-
ing Transmission Control Protocol (TCP), User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP) protocol pack-
ets and commonly focus on exhausting network bandwidth or packet
processing capacity.
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1.1. DDoS Attacks

• Flooding attacks: This type of attack focuses on exhausting the
network bandwidth or packet processing speed by sheer amount
of packets sent (e.g. UDP and ICMP flood).
• Protocol exploitation flooding attacks: The aim of this type of

attack is to exhaust resources by exploiting design feature or
error in implementation to exhaust target resources (e.g. TCP
SYN flood).
• Reflection-based flooding attacks: In this type of attack, attackers

send a forged request using the victims source address to a known
vulnerable reflector which then replies to the spoofed source.
This is an attempt to hide origin of the attack. A typical example
is Smurf attack which uses ICMP echo requests.
• Amplification-based flooding attacks: This type of attack is com-

monly combined with reflection flooding attacks by leveraging a
services to amplify the amount of traffic generated by the service
response.

L7 flooding attacks
Application-level DDoS attacks consume less bandwidth in general
and are thus stealthier from a L3/L4 point of view than volumetric
attacks since they are very similar to legitimate traffic, but usually
have the same impact on the services since they target specific char-
acteristics of application level protocols. However, the basic ideas
remains the same as for L3/L4 attack types mentioned above only on
application layer protocols. A notable additions to the types are:

• Asymmetric attacks: This attack consists of forging a request
resulting in intensive computation on the victim side. This is
typically an expensive database query or HTTP multiple VERB
single request.
• Slow request/response attacks: This attack consumes resources

on a victim side by keeping large number of application sessions
open by slow updates. A prominent example is Slowloris HTTP
attack.

In [5] Mirkovic et al. also classifies DDoS defense strategies. The most
notable strategies listed are filtering and rate limiting which are commonly
employed for L3/L4 and L7 attacks respectively. Zargar et al. in [3] further
extends this taxonomy by the deployment location of a defense technique to
Source, Destination, Network and Hybrid approaches respective of an attack
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1. Background Information

origin. As discussed in the research, detection is usually most accurate close
to a destination of an DDoS attack, however mitigation is better deployed
close to the sources of an attack since it is possible that the bandwidth is
depleted on a transit network even before reaching the victim given high
enough attack volume.

Focusing on the defense methods deployed at the destination of DDoS
attack, various mechanisms that can take place either at the edge routers
or the access routers of the destination Autonomous System are further
classified in [3] into multiple categories:

IP Traceback mechanisms
In this mechanism the source of a forget packet is traced back to
its true origin. It usually relies on packet marking mechanisms. As
Zargar notes, this method has a significant operational and deploy-
ment challenges since a non trivial number of routers that support
this marking is required for this method to be effective.

Management Information Base
This method consists of building a database of packet and routing
statistics which is later used to detect anomalies and help identify
when a DDoS attack is occurring and provide information for mitiga-
tion system reconfiguration.

Packet marking and filtering mechanisms
These mechanisms aim to mark legitimate packets based on some
heuristic. This packet marking can be later used for filtering or given
higher preference in case of DDoS attack by dynamic filters installed
on the victims network edge.

Packet dropping based on the level of congestion
As the name suggests, these defense mechanisms drop suspicious or
undesirable packets so that desired levels of congestion on a network
links are met.

The History-based IP filtering is one of the mechanisms classified in
Packet marking and filtering mechanisms category and is described in detail
in the next section.

1.2 History-based IP Filtering
This thesis partially builds on ideas presented in [8] and heavily relies on
the published results which introduces novel and robust solution to DDoS
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1.2. History-based IP Filtering

attack mitigation which can be used on most types of current internet-facing
computer networks.

The main idea of history-based IP filtering presented by Tao Peng et
al. in [8] is that most IP addresses communicating with a certain network
does so repeatedly and fairly frequently. The intuition behind this is that
people tend to visit services present on the network on a regular basis and
that this holds to a high degree (around 82.9%, [9]) even for cases of flash
crowd (i.e. significantly more than usual amount of legitimate users access
one particular service at the same time) as demonstrated by Jung in [9]. A
prime and the most relatable examples of such a service would be a web
based news outlet or a company information system.

To leverage this property, Peng proposes to store a history of entities
which commonly communicate with the protected network outside of DDoS
in a database together with a timestamp and exchanged amount of packets.
A sliding window of most frequent IP addresses which regularly had a valid
communication with the network is kept in the database and later used as a
white list of entities which are allowed to communicate with the protected
network during a DDoS attack. By changing a size of the window and other
parameters like the required minimum number of packets exchanged in a
single communication flow for it to be considered valid a balance between
precision and the database size can be established to fit a specific needs of
the network operators.

The proposed scheme has two modes of operation for the system: a nor-
mal state, during which new addresses are inserted into the history database
and a state when the edge router becomes overloaded due to DDoS at-
tack during which the inbound packets are being dropped according to the
learned history (i.e. the database is used as a white-list) and no new records
are inserted into the database.

In the experiments performed in [8], a two week sliding window was kept
in a database and flows consisting of less than three packets were ignored
since these were most likely network scans or a reply from victim to a
request with spoofed source IP address. The tests described in the original
work performed on various datasets from real networks shows that about
88-90% of IP addresses that were observed over the period of two weeks
also appeared in the next week. This of course supports the idea behind
the proposed filtering scheme.

While the History-based IP Filtering alone can be very precise and effec-
tive, as demonstrated in the original white paper, it can also be relatively
easily circumvented since there are types of attacks for which this type
of mitigation fails pathologically. The common denominator is that the
source addresses are either spoofed to match that of the valid clients or the
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1. Background Information

attacking addresses had historically communicated with the protected net-
work either as a preparation for an attack or the communication originated
in an actual valid need (e.g. networks with open Domain Name System
(DNS) resolvers). Thus it is not recommendable to use this method as a
sole DDoS mitigation strategy but rather combine it with other methods
such as RepTopN heuristic presented in [10].

1.3 Network Flow Monitoring
Network flow monitoring is similarly to a packet capture a passive network
monitoring approach. However, in flow export, packets are aggregated into
flows. In RFC 7011 [12] network flow is defined as “a set of IP packets
passing an observation point in the network during a certain time interval,
such that all packets belonging to a particular flow have a set of common
properties”. According to Hofstede et al. [11], these common properties usu-
ally include source and destination IP addresses and port numbers, but can
be also any other packet header fields, meta-information and even packet
contents.

Flow monitoring has several advantages over packet capture which makes
it more suitable for deployment on high-speed networks. Most notably, be-
cause of the aggregation, flow monitoring is considered to be more scalable
than traditional packet-based traffic analysis. Also, its wide deployment is
much more feasible since it is commonly supported by network hardware
while packet capture requires expensive equipment and substantial infras-
tructure for storage and analysis. The storage requirements alone can be
several orders of magnitude lower compared to packet capture due to the
aggregation. [11]

The Flow monitoring architecture described by Hofstede et al. consists
of several stages:

• Flow exporter : This is usually a packet forwarding device which reads
packets from a network line and aggregates them into network flows.
Flows which are considered to be terminated are then exported to one
or more flow collectors using a standardized protocol.

• Flow collector : Commonly a software which receives the exported flow
records, optionally performs pre-processing like aggregation, filtering
and data compression and stores the records for later use. Example of
flow collector software is IPFIXcol [28] developed by CESNET a.l.e.
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1.3. Network Flow Monitoring

• Analysis application: Analyzes flow data stored by flow collector. This
can be either manual or a fully automatic process. The NEMEA
system described in the next chapter is an example of such application.

One of the most prominent protocols used to transfer flow records from
exporters to a flow collectors is IP Flow Information Export (IPFIX), which
is described in [12] as “a unidirectional, transport-independent protocol
with flexible data representation”, however we omit its detailed description
since it is not used directly in this thesis.

1.3.1 NEMEA System
One of the tools heavily used in this thesis is NEMEA:

NEMEA (Network Measurements Analysis) system is a stream-
wise, flow-based and modular detection system for network traf-
fic analysis. It consists of many independent modules which are
interconnected via communication interfaces and each of the
modules has its own task. Communication between modules
is done by message passing where the messages contain flow
records, alerts, some statistics or preprocessed data. [13]

As per the flow monitoring architecture in previous section, NEMEA
can be classified as an automated analysis application.

Multiple ingest formats and sources are supported by NEMEA, however
it uses its own Unified Record (UniRec) data format for efficient commu-
nication between module instances. Each instance of a NEMEA module
runs as a separate process. The communication between modules is defined
via application level interfaces each being either TCP socket, UNIX socket,
file or a blackhole which drops all traffic. Together, this allows forming of
complex multistage record processing pipelines as shown later in this thesis.

The project is developed and maintained by CESNET a.l.e. under dual
GPL-2.0 [14] or the permissive BSD 3-Clause license [15].

NEMEA is currently deployed on the CESNET2 network which inter-
connects main university cities of the Czech Republic and other sites and
from which we use anonymized data to design and verify multiple compo-
nents of this thesis.

In this thesis, we rely on several software projects and libraries, however
NEMEA is the most prominent since it is used to gather and manipulate
network flow records and we also contribute two new modules to the project
as a part of this thesis. The contributed modules are described in chapter
3.
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Chapter 2
Analysis and Design

This chapter presents a set of requirements for the designed system and
the resulting network profile, discuss possible solutions for the storage of
history about entities communicating with the protected computer network,
compare several forecasting models and evaluate their performance and
suitability for our problem of generating expected traffic levels flowing to
the protected network.

In the last part of this chapter, we discuss the results of the evaluations
and conclude with a high level design of the proposed system.

2.1 Requirements Analysis
During the design of this information system a few requirements have
emerged. The common requirement for all parts of the system is for it
to be capable of handling information for multiple separate networks in one
single deployment (a way of multitenancy). This is mainly done in order
to lower the complexity of deployment but also to save some computation
resources.

In section 1.2, we have described a History-based IP Filtering scheme
which uses white lists of allowed IP addresses. The implementation of this
scheme leads to a problem of responding to simple set membership queries
where the set is bound to a certain time range. In other words, the resulting
system has to provide a way to query whether a certain IP address is within
a white list which itself is limited to a certain date range.

Also, the system for gathering of historical information about network
entities has a performance requirement for it to be able to digest at least
400 thousand flow records per second. This requirement originates from
CESNET2 network where this is the current observed maximum during
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2. Analysis and Design

peak hours and where the prototype of this system should be deployed.
Though not explicit, it is paramount that the resulting information should
be possible to use for packet filtering on the edge of the protected network
and thus as fast as possible.

There is only one hard requirement for the second part of the system
which is that the information about expected levels of traffic includes lower
and upper bounds for triggering of a packet filtering mechanism on the edge
of the protected network. The other, somewhat soft and vague, requirement
is for the forecast be robust.

2.2 Evaluation of Efficient Storage of
Network Communication History

There is multitude of ways to store network entity identifying information
(i.e. an IP address) and time when the communication happened. For
example this information could be stored in a relational database, however
we do not need a set of strong grantees provided by this type of database for
our use-case. Limiting focus on the features required a key-value store seems
like a more viable solution since it typically provides higher transactional
throughput than traditional relational databases while still being flexible
enough to model out data. If we further limit the required functionality to
a bare minimum, a class of probabilistic data structures that in exchange for
absolute certainty are fast, extremely space efficient and can answer the set
membership queries in constant time emerges as an interesting alternative.

In this section, we describe and compare three such probabilistic data
structures that fit our requirements.

2.2.1 Bloom Filter
Bloom filter, first introduced by Burton H. Bloom in [16], is a space-efficient
probabilistic data structure that supports some of the common set opera-
tions with constant time complexity: insertion and element membership
query. However the membership query can return false positives with con-
figurable probability. The false negatives are not possible. In other words
the result of membership query is either that an element is possibly in or
that it is definitely not in a set.

Another aspect of Bloom filters is that, in its basic form, it does not
support element retrieval or deletion. This means that it is not possible
to retrieve all elements from the set unless they are from a finite field (in
which case we would need to enumerate all of the field elements).
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The data structure consists of a bit array of size m and a k different
hash functions h. Each of the hash functions maps a set element to exactly
one bit in the array. Positions of the k bits for an element in the array must
be uniformly distributed.

Initially, when the filter is empty all bits of the array are set to 0. To
insert an element, it is hashed by the k hash functions and bits correspond-
ing to the k hashes in the bit array are set to 1. To check if an element
is in the bit array a same hashing operation is performed and if all of the
corresponding bits in the array are 1, the element is likely in the set. If at
least one of the bits is 0, then the element is definitely not present. This
process can be seen on figure 2.1.

Figure 2.1: Insertion of an element to a Bloom filter (source: [17])

Regardless of the size of data being inserted, Bloom filter uses only
about 10 bits per element at 1% false positive probability, as noted in [18],
since the inserted element is being hashed into the bit array. This is much
more efficient compared to a naive method where a full IP address has
to be stored. Furthermore, this feature allows for experimentation with
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more complex identifiers of connection with the remote network entity (e.g.
source and destination IP address tuple).

Given that the hash functions are perfectly random, the probability of
a false positive in a Bloom filter where n is the number of elements encoded
in the filter [19] is:

f =
(

1−
(

1− 1
m

)kn
)k

≈
(
1− e−kn/m

)k

In [19], Border et al. also derives the optimal number of hash functions:

kopt = ln 2
(
m

n

)
The optimal size of the bit array is given by Tarakoma et al. in [20]:

mopt = − n ln p
(ln 2)2

Given the formulas above, we can construct an optimal Bloom filter
from just the expected number of unique IP addresses and desired false
positive rate.

Another interesting property that needs to be kept in mind when work-
ing with Bloom filters is that the false positive rate grows with the number
of elements inserted from 0% to the designed error rate. However, if more
than the amount of elements for which the filter was designed is inserted,
the false positive rate keeps growing over the desired value. This eventually
reaches state where all the bits in the underlying array are set to 1 and the
false positive error rate is 100%. However, as Swamidass in [21] shows, even
if we don’t know the actual count of inserted elements, we can approximate
it (and thus the error rate) using the bit array cardinality X:

n̂ = −m
k

ln
(

1− X

m

)
The last interesting property of Bloom filters for our application is that

it is possible to create an union of two Bloom filters without a loss of
any information simply by computing bitwise OR of their underlying bit
arrays [20]. The resulting array will be the same as if it was created by
inserting elements encoded in both filters one by one into the new filter.
The condition here is that the number and type of hashing functions and
bit array size used are the same for the resulting Bloom filter and both of
filters for which we are computing the union.

Given the long history of Bloom filters, there exists a lot of libraries
implementing this data structure. We liked [22] in particular since it is
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extremely fast and straight to use and distributed under the 2-Clause BSD
license [23]. The speed of this library is mostly because it implements ideas
presented by Kirsch er al. in [24]. In summary, the most computationally
expensive part of inserting an element into a Bloom filter is producing the
k hashes. The proposed improvement is to use constriction with two hash
functions only for the first bit position and derive the remaining k− 1 from
this by single multiplication and modulo operation which is significantly
less expensive than computing even the fastest hash functions which fulfill
the distribution requirements. While in theory this has negative impact on
the uniformity of distribution of the resulting bit positions, the practical
impact is negligible as shown in the research.

2.2.2 Cuckoo Filter
Cuckoo filter, described in [1] by Fan, Andersen, Kaminsky, and Mitzen-
macher, is very similar to Bloom filter, in a way that it also space efficient
probabilistic data structure which supports fast set membership testing and
the result of a membership query can be also a false positive. They build
on the ideas of Cuckoo hashing and while maintaining similar space com-
plexity, Cuckoo filters improve upon the design of Bloom filter by offering
deletion, limited counting, and a bounded false positive probability.

The Cuckoo filter consists of an array of buckets. Each of the buckets
can hold b small f -bit fingerprints. The value of f is computed based on
the required ideal false positive probability required for the usage when
designing the filter.

Having bound false positive rate, means that, similarly to Bloom filters,
false positive rate steadily increases with load of the data structure, but,
in contrast to Bloom filters, Cuckoo filters never exceeds its designed false
positive rate. A Cuckoo filter load is a proportion of non-empty slots to
empty slots.

In Cuckoo hashing, each element is hashed by two different hash func-
tions so that it can be inserted into one of two buckets. The element is
placed in a first empty slot found. However, if both buckets are full a con-
flicting record has to be evicted to its alternative position for the insertion
to finish successfully. The evictions can happen recursively, but it is typi-
cally limited to a several iterations to guarantee constant time complexity.
When the last iteration has conflicting pair of elements a complete removal
of one of the conflicting elements has to happen or the operation fails. How-
ever, as stated in the original publication, this happens rarely and increases
only with the Cuckoo filter load. The exact algorithm for element insertion
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described in [1] can be seen in algorithm 1. The first part of the insert
algorithm is also common for both search and delete operations.

f = fingerprint(x);
i1 = hash(x);
i2 = i1⊕ hash(f);
if bucket[i1] or bucket[i2] has an empty entry then

add f to that bucket;
return Done;

end
// must relocate existing items
i = randomly pick i1 or i2;
for n=0; n < MaxNumKicks; n++ do

randomly select an entry e from bucket[i];
swap f and the fingerprint stored in entry e;
i = i⊕ hash(f);
if bucket[i] has an empty entry then

add f to bucket[i];
return Done;

end
end
// Hashtable is considered full
return Failure;
Algorithm 1: Element insertion into Cuckoo filter (source: [1])

As can be seen on algorithm 1, it is simple to compute the location of
the other bucket. The downside of this scheme is that given an f -bit fin-
gerprint, the second bucket is chosen from 2f possible locations and is thus
not com<pletely random for small fingerprints. Despite having theoreti-
cally much more collisions than Bloom filters, empirical analysis performed
in [1] has shown, that for f = 7 the load factor of the Cuckoo filter mirrored
that of a Cuckoo hash table with two perfectly random hash functions.

Cuckoo filter, in contrast to Bloom filter, in its basic form also supports
limited entry counting. It is achieved simply by inserting the f -bit finger-
print into a multiple fields in the assigned buckets. The maximum of the
counter is then decided by the number of positions the fingerprint can be
in.

Deletion works by removing all of the matching fingerprints from its
possible locations if counting is allowed. In case of counter decrement, only
one of the fingerprints is removed.
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The search and deletion time complexity for Cuckoo filters and amor-
tized time complexity for insertion are all O(1) [1].

It seems to be possible to perform a set union on two Cuckoo filters
constructed with the same parameters. The idea is to iterate over the fields
in all of the buckets from both filters and insert the fingerprints one by one
effectively skipping the initialization phase in 1. Compared to Bloom filter
merging, this is significantly less straight forward and more computationally
intensive. Another issue is that the union of two filters might not be simply
possible in some cases due to exceeded capacity of the resulting filter.

Given that the Cuckoo filters were introduced only in 2014, there is
much less libraries readily with varying degree of quality. Nevertheless, the
implementation included in the NEMEA Framework project [25] is suffi-
cient.

2.2.3 Quotient Filter
Quotient filters as Bloom or Cuckoo filters are space efficient probabilistic
set with feature set comparable to that of Cuckoo filters.

An f -bit fingerprint is computed for each element and split into a r bit
reminder and q = f −r bit quotient. The quotient is used as an offset to an
array of m slots each consisting of the r bit reminder and three bits used
to signalize the state of the slot and its associate elements. Each element
has a primary position given by its quotient; canonical slot. When a slot is
empty the reminder is simply written to the slot and appropriate bits set.
However when a canonical slot is already occupied the reminder is stored
in some slot to the right. The insertion algorithm ensures that elements
belonging to the same canonical slot are stored in contiguous slots called
a run. It is not guaranteed that the run begins at its canonical slot. A
cluster is a contiguous runs which starts at its canonical slot and is either
terminated by empty slot or by a start of another cluster.

The bits attached to each slot are used to denote additional information
about the elements. Whether the slot is canonical for some element in
the filter, whether the slot is the first reminder on a run and whether the
reminder is shifted from its canonical slot. The meaning also varies based
on their combination and not all possible bit combinations are used. A
set of complex rules is then applied to perform a lookup until a slot with
matching reminder is found or no other possible positions remain.

The lookup and insert operations gets increasingly expensive with the
growing size of the clusters. Bender et al. in [26] argues that if the hash
function used to generate the fingerprint is uniformly distributed, then the
length of most runs is very likely in O(logm).
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The main downside of Quotient filter is that it requires noticeably more
space compared to Bloom or Cuckoo filters. The main advantage over
Bloom filters is that only one hash function needs to be computed, however,
this advantage is diminished by Bloom filter performance optimizations such
as [24].

2.3 Evaluation of Forecasting Models

One of the requirements for the network profile, is that it includes expected
levels of traffic. In this section we perform a short evaluation of three
forecasting models on data gathered from the NEMEA2 network.

We have chosen byte count, packet count and number of connections
flowing to the protected networks as the forecasted metrics since it is readily
available from network probes located in the CESNET2 network exported
as IPFIX records [27] to IPFIXcol flow collector [28] which can be then
further processed by the NEMEA system introduced in the first chapter of
this thesis.

The main reason for using flow records is that it is significantly more
compact in comparison to more traditional packet dump, thus allowing for
monitoring of bigger computer networks. However, one downside of flow-
based monitoring, is that in order to keep information in the flow record
accurate, the flow record is produced only after the connection has ended or
after a set maximum connection duration. This has an interesting drawback
in that a long-lived connections are not visible in the flow records until the
configured maximum connection length runs out. This is the main reason
for the choice of metric and its interval used in this comparison and in the
resulting network profile.

For reasons outlined above, we’ve decided to use hourly sum of bytes,
packets and number of distinct flows for the forecast model evaluation to
account for the 5 minute maximum connection duration configured on the
NEMEA2 flow exporters. This of course means, that the prospective im-
plementations of the filtering system using this network profile information
will have to do appropriate approximations.

The data used in this comparison were collected from CESNET2 and
aggregated using the NEMEA aggregation module. Figure 2.2 shows a
diagram of the metric collection system architecture. Configuration for the
NEMEA pipeline is available on the media enclosed to this thesis.
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Figure 2.2: Diagram of the metric collection system architecture

2.3.1 Evaluation Method
When evaluating models, it is common to split the data to a training and
test portions. The training data is used to estimate parameters of a fore-
casting model and the test data is then used to evaluate its accuracy to
minimize any bias and over-fitting of the model on particular data. How-
ever, time series can’t be split randomly to two sets of values as the values
in time series are typically not independent. The spit is done at a certain
point in the time where a number of data points prior to this splitting point
are used as a training set and data points after the splitting point are used
as a testing set. [29]

To further increase the reliability of results we use a cross-validation
modified for time series evaluation described in [29], where an average over
rolling series of training and test sets is computed. This is depicted on figure
2.3, where the red observations are form the test sets, blue observations are
form the training sets and gray observations are not used for the current
step. As can be seen in the figure, a number of the earliest observations are
not considered as test sets, since it is not possible to obtain a reliable forecast
based on a small training set. This method is also known as “evaluation on
a rolling forecasting origin” [29].

To compare the models, we use forecast error e which is difference be-
tween observed y and forecasted value ŷ. Given training data y1, . . . , yT

and test data yT +1, yT +2, . . . , the error is given by:

eT +h = yT +h − ŷT +h|T

We then measure the forecast accuracy by summarizing the errors to
three metrics: mean absolute error (MAE), root mean squared error (RMSE)
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Figure 2.3: Time series cross-validation (source: [30])

and mean absolute percentage error (MAPE):
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We include both MAE and RMSE, because forecast method that min-
imises the former will lead to forecasts of the median, while minimising the
later will lead to forecasts of the mean. Also, RMSE is more punitive to
larger errors, which is usually desirable. On the other hand MAE is more
easily understood as it is not scaled or skewed. [29]

In order to make the profile more granular, we’ve also decided to split
the data by Protocol field in the IPv4 [31] header and Next Header in the
IPv6 header [32]. This field gives information about how to interpret data
contained in current packet.

The data we are using for the model evaluation were gathered over a
period of four months from the CESNET2 network. Since the data are
collected from an actual production network, it also contains anomalies.
For example, when ICMP data is selected, it contains what appears to be
a port scan of the whole network. This is depicted on fig 2.4. However, we
do not want to forecast any of the anomalies. To fix this, we’ve manually

20



2.3. Evaluation of Forecasting Models

removed the anomalous parts of the data and then filled the newly created
gaps by data points approximated by a linear function.

Figure 2.4: Example of anomaly in ICMP data used for model evaluation

In the requirements section, we specify that the forecast needs to be
robust. To include this criteria in our model evaluation, we use the unmod-
ified data for training and cleaned-up data for testing. This has a two-fold
effect. First, any influence on a model by the anomalies will result in higher
forecast error. Second, this further decreases error for models that forecast
data points closer to what we consider correct.

With respect to the discussion above, we’ve chosen the cross validation
parameters to have at least 500 data points, split the dataset into 40 folds
and forecast 24 hour ahead. However, we’ve decided to evaluate each hour
as a separate forecast.

The anonymized data and evaluation computations in form of Jupyter
notebook [33] are available on the medium enclosed to this thesis.

2.3.2 Evaluation Models
For the expected levels of traffic of the network profile, we’ve decided to use
forecast models using history of the given metric to make a forecast.

The first model, which we call Last Value, simply repeats the last seen
value of the forecasted metric. We include this model since it is commonly
used as baseline for comparison of more complex models.

The second model in comparison is Linear Regression. For the com-
putation we use implementation available from scikit-learn [34], which uses
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Ordinary Least Squares (OLS). OLS has a closed form solution and its com-
putation can be a potential problem for large data sets. This was not the
case on the testing data set however.

The last model we used is Prophet which is both a forecasting model
presented by Tayloer et al. in [35] and a forecasting toolkit developed and
distributed under the 2-Clause BSD License [23] by Facebook.

Prophet is a procedure for forecasting time series data based on
an additive model where non-linear trends are fit with yearly,
weekly, and daily seasonality, plus holiday effects. It works best
with time series that have strong seasonal effects and several
seasons of historical data. Prophet is robust to missing data
and shifts in the trend, and typically handles outliers well. [36]

Prophet uses composite model with three components: trend g(t), sea-
sonality s(t), and holidays h(t):

y(t) = g(t) + s(t) + h(t) + εt.

The trend function models non-periodic changes. In Prophet this can
be modeled either by a logistic saturating growth model or a linear function
with changepoints. The changepoints are any growth-altering events and
can be either selected manually or automatically. In our case, there are
strong changepoints visible in our test data at the start of academic year
so we’ve decided to use the linear model.

Seasonality represents periodic changes. Time series, as is the case of
our testing data, often have multi-period seasonality as a result of the hu-
man behavior. This means that we can observe periodic changes within
the day due to normal human daily cycle, but also a changes with weekly
period which are effect of the work week. Sometimes even a changes with
monthly period occur. An good example is a network traffic in an account-
ing company where the end of a moth is typically much busier. However
this is not the case with our testing data. Also, since we do not have enough
gathered data, yearly seasonality wasn’t used either. In Prophet, seasonal-
ity is modeled by a Fourier series. One consequence of this model is that
Prophet isn’t a good fit for machine generated data (as opposed to data
dependent on human behavior). An example would be stock-exchange due
to high frequency algorithmic trading.

Prophet also supports multiplicative and additive model of seasonality.
In short the difference is whether seasonality component is added to or
the seasonal effect is a factor that multiplies the trend component. We’ve
decided to use the multiplicative model.
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Holidays and other events take a special place as those occur on po-
tentially irregular schedules. However, the impact of the holiday is often
similar each year. In the model evaluation Jupyter notebook enclosed to
this thesis, we provide a list of holidays relevant to our test data, but this
has no real effect given that the span of the evaluation data is less than a
year.

Lastly, changes which are not accommodated by the model are repre-
sented by the error term εt. A normal distribution is assumed.

2.3.3 Evaluation Results
In this part we present and discuss the results of the forecast model evalu-
ation. Since the results were very similar for TCP, UDP and ICMP we’ve
decided to present only TCP results and include only UDP or ICMP results
where there are notable differences. The full results of the evaluation are
available in the Jupyter notebook on the media enclosed to this thesis.

All of the figures in this section show a hour by hour error on the 24 hour
forecast starting at the next hour forecast and ending 24-hour prediction.

On figures 2.5 and 2.6, depicting a comparison of the models on TCP
byte and packet count respectively, we can clearly see the error values on
Last Value metric rise until roughly 12 hour forecast and then decrease until
the 24 hour forecast. This is not surprising, given that the last known value
is simply repeated and given that the daily seasonality closely resembles a
sine wave with period of 24 hours. However, Last Value does not account
for overall trend in the data and thus the error at the end of the 24 hour
forecast period is higher than at the start.

The errors of Prophet model on figures 2.5 and 2.6 are clearly smaller
than the two other models. There is slight error increase as the forecasted
hour is more distant from available data points. We believe, that this is
caused by uncertainty in the trend model component.

The Linear Regression model error on figures 2.5 and 2.6 is more or
less constant. This is also not surprising given that the model only fits an
overall trend in the evaluation data.

Surprisingly, Last Value model did yield better forecast in case of flow
count metric as can be seen on figure 2.7. However, looking at the raw
data of the flow metric, the flow count shows much weaker seasonality as
the remaining metrics. hAlso, the relatively smaller amplitude helps the
Last Value model in this case. An example cut out of the evaluation data
comparing the seasonality of TCP flow count and bytes is shown on figure
2.8. Similar issue also affects all ICMP metrics. We believe that, in this
case however, the lack of strong seasonality is caused by the fact, that ICMP
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Figure 2.5: Comparison of model MAE and RMSE on 24 hour forecast
using TCP byte count metric

Figure 2.6: Comparison of model MAE and RMSE on 24 hour forecast
using TCP packet count metric
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Figure 2.7: Comparison of model MAE and RMSE on 24 hour forecast
using TCP flow count metric

messages are not as dependent on human activity but are rather machine
generated.

Figures 2.9, 2.10 and 2.11 show a relative error in the models. Overall
errors in Prophet are under 40%. Also, in comparison to the Linear Regres-
sion model, Prophet errors do not fluctuate as much and remain relatively
stable. The two remaining model error even exceed 100% in some cases.

As discussed above, there are some concerns regarding the seasonality
of some of the TCP flow count and all ICMP metrics. As shown on figure
2.11, the errors are actually much smaller than for the other metrics. This
is also the case for ICMP.

In summary, the Prophet forecast model yields the best results for most
of the evaluated metrics. In the remaining cases the errors are reasonably
small for it to still be considered useful.

25



2. Analysis and Design

Figure 2.8: Seasonality comparison of TCP flow and bytes count metrics

Figure 2.9: Comparison of model MAPE on 24 hour forecast using TCP
byte count metric
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Figure 2.10: Comparison of model MAPE on 24 hour forecast using TCP
packet count metric

Figure 2.11: Comparison of model MAPE on 24 hour forecast using TCP
flow count metric
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2.4 System Design
In this section we summarize the decisions made based on the result of
forecast model and efficient storage of network communication history eval-
uation. We also present a high level design overview of the proposed system.

The system is intended to be used for DDoS mitigation on the protected
network edge or as an additional support for decision making of network ad-
ministrators. To satisfy both needs, and to promote a broader adoption in
the packet filtering solutions, we’ve decided to create modular system where
each component is decoupled via a well defined application programming
interface (API) so that the components can be improved upon or replaced
with ease as the requirements evolve. Since we are integrating our solu-
tion into larger software project, we also focus on component reusability to
maximize utility outside of this system.

The system proposed in this thesis is composed of two main subsystems
each spanning multiple components. The first one is the Network Traffic
Level Forecast Subsystem. Its purpose is to provide information on expected
levels of traffic flowing to a protected computer networks to automatically
detect anomalies and either used in semi (e.g. alerting) or fully automated
DDoS mitigation system.

The second subsystem is a scalable implementation of History-based
IP Filtering, which was shortly introduced in chapter 1.2 of this thesis,
and is responsible for gathering and aggregating information about entities
communicating with the protected computer networks. As outlined in this
chapter, it is build around a probabilistic data structure as the data storage.
This subsystem can also either be used in a packet filtering scheme of a
DDoS scrubbing center at the edge of a protected network or as a additional
source of information to help better understand the nature and source of
DDoS attack for network administrator. While this subsystem can be used
in a different deployment (e.g. as a host level packet filter), we designed this
system with the deployment at the network edge of a protected computer
network as its main purpose.

Together these two parts form a system providing information about the
monitored networks that we’ve decided to call network profile.

2.4.1 Network Traffic Level Forecast Subsystem
The first part of the system generates the expected levels of traffic on the
protected network and makes it available to clients over HTTP protocol.
Its architecture is shown on figure 2.12.

28



2.4. System Design

Figure 2.12: Network Traffic Level Forecast subsystem architecture

We’ve decided to reuse setup and NEMEA configurations described in
section 2.3 for network metric data collection and input and is shown sim-
plified on the diagram.

Data gathered by the NEMEA is periodically ingested by the Network
Traffic Level Forecast module which then produces a one profile file per
protected network with the expected levels of traffic. The profile files are
stored on a file system in a hierarchy maintained by the forecast module split
by a network on top level and by a time stamp on a sub-level. This allows
inspection of the forecast history and eliminates the need for complicated
caching scheme on application level since the forecast computation is a
highly resource demanding task.

The static files made by the forecasting module are then served to clients
by a common web server. The only requirement for the web server config-
uration is that the latest forecast file is available on a well known URL for
simplicity of client implementation. Specifics of the forecast module and its
output data formats are described in the next chapter.

For the forecasting model used in the Network Traffic Level Forecast
module, we’ve decided to use the Prophet model described in 2.3 with the
same parameters since its performance and robustness best fit our model of
24h expected levels of traffic in the network profile. We’ve decided to use the
Prophet model only even through the Last Value model performed better
in some specific cases since we believe that the uniformity and simplicity of
the module far outweighs the small difference in the forecast precision.

As can be deduced from the design of this subsystem, this detection
mechanism is not well suited for application level attacks since the volume
required to successfully carry out a DDoS attack is usually significantly
smaller than with the network/transport level attacks described in the pre-
vious chapter.
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2.4.2 Network Communication History Gathering
Subsystem

This subsystem is responsible for gathering and aggregating information
about entities communicating with the protected computer networks. The
architecture is shown on figure 2.13 with the NEMEA Bloom Filter Pipeline
detailed on figure 2.14.

Figure 2.13: Network Communication History Gathering Subsystem

The subsystem scalability, efficient memory usage per entry and query
performance is achieved by using probabilistic data structures described in
section 2.2. Of the three possibilities, we’ve decided to use Bloom filters.

The false positives in combination with white list based filtering do
not pose a serious issue for our application when the possibility of false
positive is kept sufficiently small. To set it in the context of History-based
IP filtering, we argue that it is much better to erroneously classify few
attacking IP addresses from a massive DDoS attack as legitimate traffic
since the infrastructure should be able to handle slightly increased load
than block a legitimate client and possibly loose a customer.

The Bloom filters were chosen partially because of their simplicity and
ease of implementation, but mainly because the speed with which the unifi-
cation of two filters can be done and the mechanics of exceeding the designed
capacity as discussed in section 2.2. Another benefit of Bloom filters is their
wide spread usage and understanding of their limitations.

In this subsystem, the data are first ingested into the NEMEA frame-
work. We then apply simple rules that filter out messages that, for the
purpose of this system, we do not consider a valid communication with
client. The examples are ICMP Echo Request messages or any unsolicited
traffic that does not receive a response form the protected network.
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To support a multiple network prefixes per single instance of the Bloom
History NEMEA module, we’ve decided to decouple this functionality to
a separate Prefix Tags module. The Prefix Tags module perform network
prefix matching and attaches tags to a matched UniRec messages according
to its configuration. Messages not belonging in any of the network prefixes
listed in configuration are dropped. This lowers load and complexity of the
Bloom History module.

The last part of the NEMEA Bloom Filter Pipeline is the Bloom History
module. It periodically creates a clean Bloom filter per configured network.
As the messages are delivered it inserts the destination IP addresses in-
cluded in the message into the current Bloom filter using the network tag
added by the Prefix Tags module. After a configurable period, the current
filter is serialized and send, possibly over network, to the Bloom History
Aggregator Service. A new clean Bloom filter is then created to take its
place. The API and the serialized format of Bloom filter are described in
detail in the next chapter.

While we’ve restricted ourselves to insert only destination IP address
into the Bloom filter in this thesis, it is certainly possible to insert any data
available. For example a tuple of source and destination IP addresses could
be used, however this also rises the number of distinct elements.

Figure 2.14: NEMEA Bloom filter pipeline architecture

Unfortunately there is a catch to storing the information using a Bloom
filter. We most likely don’t want to keep the information about IP addresses
forever. Certainly, there is a time limit after which, if the IP address did
not communicate with the protected prefix, we would like to remove the
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"white-listing" of such IP address. The catch is in the Bloom filters; once
an element is inserted, it can not be effectively removed from a Bloom filter.
On the other hand, Bloom filters can be merged together very easily and
efficiently without any information loss. This is the reason we’ve designed
the Bloom History Aggregator Service.

The Bloom History Aggregator service shown on figure 2.13 accepts the
periodically uploaded Bloom filters send by the Bloom History NEMEA
module and stores them in a file system hierarchy similar to the one used
by network traffic level forecast module. The main difference is that the sep-
arate Bloom filters are serialized with the time range information describing
the span of Bloom filter contents.

On request from a client, the Bloom History Aggregator service reads
and computes union of a Bloom filters for a given network in requested time
range. This results in a efficiently encoded probabilistic set of entities, which
communicated with our network in a given time range and which we can
consider to be legitimate users (i.e. a white list). The resulting Bloom filter
can be then used for decision making support of network administrators
in a form of monitoring system or, given the speed of element membership
queries on Bloom filters, as a part of an actual DDoS mitigation solution.

There is only one requirement that in case of a DDoS attack on a pro-
tected network prefix, the mitigation or alerting system has to notify the
Bloom Aggregator Service so that it does not store information about the
communicating entities. Failure to do so would result in inclusion of the
attacker IP addresses in the white list.

Another aspect of this subsystem is that the Bloom filters cannot be
resized once created without having the original data. Because of this a
proper planning and analysis of expected number of unique IP addresses
in a time window which will be used for construction of the final Bloom
filters by Bloom Aggregator Service is needed in order to keep the false
positive rate within the configured bounds. Underestimation could result
in a Bloom filter with higher false positive rate than expected.

In contrast to the Network Traffic Level Forecast Subsystem, the infor-
mation provided by this subsystem can be used to diagnose and mitigate
even application level DDoS attacks.
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Chapter 3
Implementation

In this chapter we describe APIs and configuration file formats of services
implemented as a part of this thesis. We also show some of the more
interesting details of the implementation and the format of serialized Bloom
filters used by the system.

3.1 Forecasting Module
The forecasting module, described in section 2.4.1, is a Python [37] script
periodically run by an operating system. Each run it produces a network
profile file for each network data file present. It does not use any config-
uration file and only data_root file system path command line option is
required.

The data_root option should point to a directory with a specific struc-
ture following <data_root>/<network_id>/data.csv pattern where the
network_id is a positive integer used to identify the given computer net-
work.

The data.csv is the provided data file in comma-separated values (CSV)
format and should have at least the columns specified in table 3.1. The
PROTOCOL column should contain the IP protocol number assigned and up-
dated by Internet Assigned Numbers Authority (IANA) in [38]. The BYTES,
PACKETS and COUNT should contain a sum of byte, packet and flow count
observed in the time range given in TIME_FIRST and TIME_LAST. Each time
range should span one hour and not overlap with other periods having the
same PROTOCOL number. Data in this specific format can be easily obtained
from NEMEA framework. An example of NEMEA configuration snippet
to produce this data is available on the enclosed media.
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Column Data Type
TIME_FIRST ISO8601 time
TIME_LAST ISO8601 time
PROTOCOL uint8
BYTES uint64
PACKETS uint32
COUNT uint32

Table 3.1: Forecasting Module input data columns

The input data are then processed by Prophet [36] forecast model de-
scribed in section 2.3 of this thesis.

The output data for each network is written to file in respective network
directory following the profile-<timestamp>.json naming pattern, where
timestamp is time of ingestion of the input data in ISO8601 format. In
addition <network_id>/latest.json symbolic link is atomically updated
to point to the latest profile file for each network.

The resulting profile file is in JavaScript Object Notation (JSON) for-
mat. An example of this module output is shown in listing 3.1 with field
description inline. Note, that the C-style comments in listing 3.1 are not ac-
tually part of the JSON specification and we include them int this example
for documentation only.

All command line options and file formats are described in the README.md
file on the enclosed media.

The Forecasting Module is developed and released under the Apache 2.0
license [39].
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{
// Protoco l i d e n t i f i e d by IP pro to co l number
// By d e f a u l t ‘TCP‘ , ‘UDP‘ , ‘ICMP‘
"TCP" : {

// Metric by d e f a u l t ‘ bytes ‘ , ‘ packets ‘ and
// ‘ flow_count ‘
" bytes " : {

// Star t o f the one hour per iod in ISO8601
// timestamp
" 2018−09−03 T08:39:28 .705000 " : {

// Forecasted value o f metr ic
" yhat " : 143619009181.51968 ,
// Lower bound o f f o r e c a s t e d value o f metr ic
" yhat_lower " : 106421980435.8867 ,
// Upper bound o f f o r e c a s t e d value o f metr ic
" yhat_upper " : 180611097587.87106

} ,
. . .

} ,
. . .

} ,
. . .

}

Listing 3.1: Forecasting Module output example

3.2 Prefix Tags NEMEA Module
Prefix Tags is a NEMEA module that adds a network id tag to a UniRec
messages based on a source or destination IP address according to its con-
figuration. The network id tag can be used later in the NEMEA processing
pipeline. We’ve split this functionality from Bloom History NEMEA mod-
ule so that it does not need to be re-implemented and can be reused by
other modules.

More specifically this module adds PREFIX_TAG field to the output UniRec
messages based on SRC_IP and DST_IP fields. By default, the module
matches on both source and destination ip address. This behavior can be
switched to use only one of source or destination IP address using command
line options. Additionally, the output UniRec template updates dynami-
cally according to the input template without need to restart this module.
The network matching itself is just a linear match on configured networks
as we found it to be sufficiently fast.
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[
{ " id " : 1 , " i p_pre f i x " : " 1 7 0 . 30 . 0 . 0 /1 6 " } ,
{ " id " : 2 , " i p_pre f i x " : " 1 7 0 . 31 . 0 . 0 /1 6 " } ,
{ " id " : 3 , " i p_pre f i x " : " 1 7 0 . 32 . 0 . 0 /1 6 " } ,

]

Listing 3.2: Prefix Tags NEMEA module configuration example

The configuration file is in JSON format. As can be seen in the example
configuration on listing 3.2, it is an array of objects each describing single
network prefix. The id key is used as PREFIX_TAG value in the output
messages and ip_prefix as the network prefix. The number behind the
forward slash in ip_prefix denotes a network mask length. The keys not
used by this module inside each network configuration are ignored and will
not rise any error. This is an attempt to make the configuration extensible
by other modules and allows us to use single configuration file with the
Bloom History NEMEA module.

All command line options and file formats are described in the README.md
file on the enclosed media.

3.3 Libbloom
As the core part for manipulation of the Bllom filters, we’ve decided to use
the libbloom library [22] since it already implements speed improvements
presented by Kirsch et al. in [24]. However, a serialization and union of
bloom filters, which we require for our purposes, is not supported by the
upstream project. Both features were directly added to the library since it
touches internals not described in its public API.

As already outlined in section 2.4.2, the union of Bloom filters is needed
so that we can create a single Bloom filter spanning longer time frame. The
bloom structure in the libbloom library represents the bit array simply as
array of bytes and performs simple bit masking to access the individual
bits. To merge the two filters, a simple bitwise OR is performed on the two
byte arrays. When the compiler has enabled optimization, this results in
almost fully vectorized operation of the merging function.

Also, we’ve decided to merge the filters in-place and modify one of the
bloom structures instead of creating a new structure (and thus allocating
new memory) for each merge operation. This, of course, improves the
performance when merging many filters.

36



3.4. Bloom History NEMEA Module

The serialization functionality is needed so that the we can persist the
Bloom filters to a file system or send them over a network. We’ve decided
to use the same binary format shown on figure 3.1 for both purposes since
it greatly simplifies other parts of the Network Communication History
Gathering subsystem described in section 2.4.2. The size and entries
are both unsigned integers in big-endian byte order. The size is a total
size of the serialized Bloom filter including this field and the entries fields
denotes for how many entries was this Bloom filter constructed for. The
error is a IEE754 floating point precision used to construct this Bloom
filter. The last field is the bloom structure byte array itself.

Figure 3.1: Bloom filter binary serialization format

In addition to the two operations described above, we’ve also added an
operation to read and write the serialized bloom structure to a file system.
This is in order to increase the speed and efficiency of the merging operation.

The sources of the extended libbloom library along with our changes are
available on the media enclosed to this thesis. Our changes to the library are
released under the 2-Clause BSD license [23] which is used by the upstream
project.

3.4 Bloom History NEMEA Module
The Bloom History NEMEA module is the last module in the NEMEA
pipeline described in section 2.4.2 and is responsible for creation of the
Bloom filters containing the information about communicating entities on
the protected computer networks and their upload to the Bloom Aggregator
service or other storage.

3.4.1 Configuration
This module accepts an interval in seconds as a command line parameter
which sets the period for creation and upload of the Bloom filters.

Apart from the interval command line option a configuration file in
JSON format can be provided. The format is compatible with configuration
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[
{

" id " : 1 ,
" bloom_fp_error_rate " : 0 . 01 ,
" bloom_entries " : 20000000 ,
" api_url " : " h t t p s : // l o c a l h o s t : 8 0 8 1 /1 "

} ,
. . .
]

Listing 3.3: Bloom History NEMEA module configuration example

of Prefix Tags module described in section 3.2, but contains several more
keys for each specified network. The intention of unified configuration files
between the Bloom History and Prefix Tags NEMEA modules is to lower
the operational complexity and thus decrease the chance of human error.

An example of configuration file for this module can be seen on listing
3.3. The id key is the network identifier matching PREFIX_TAG field in the
incoming UniRec messages and is shared between the Prefix Tags and this
module. The bloom_fp_error_rate and bloom_entries are both param-
eters of the Bloom filter corresponding to a specified network network. The
former option is a decimal number between 0 and 1 and the later a positive
integer. Since Bloom filter can not be resized once created, bloom_entries
needs to be set to the expected number of distinct IP addresses communi-
cating with the specified network prefix for the desired period of time. This
period could be the either expected aggregation interval on the Aggregator
Service or simply the interval command line option when no further ag-
gregation is made. The false-positive rate will get worse than specified by
bloom_fp_error_rate if more distinct entries than configured is inserted.
The api_url specifies the HTTP endpoint to which the Bloom filters are
sent at the end of each interval.

Similarly to the Prefix Tags module, all of the listed configuration keys
are required since none has a default value and keys in the configuration
file not used by this module are not considered to be an error.

3.4.2 Execution Model
On the input of this module, messages containing the PREFIX_TAG network
identification field added by the Prefix Tags NEMEA module described
in this chapter and a DST_IP field containing destination IP address is
expected. The address in DST_IP field of each message is then inserted into
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a Bloom filter corresponding to a network id tag added by the Prefix Tags
module earlier in the pipeline.

The module consists of two threads, each with a different task. The
first thread is responsible for ingestion of the incoming UniRec messages
and their insertion to the corresponding Bloom filters. Here we expect a
sufficiently low network id tag so that it can be used as an offset to an array
of Bloom filters.

Since the element insertion to a Bloom filter cannot be done in a single
atomic operation, the access of the two threads to the Bloom filters is
synchronized by a POSIX mutex and has to be acquired for each element
insertion. As shown in the next chapter, the module does not have any
performance issues even with this simple access method.

The second thread is responsible for a periodic creation of new Bloom
filters and upload of the current ones to the Bloom Aggregator service.
Each period a set of new Bloom filters is allocated according to their specific
parameters and swapped with the current set while holding the lock. The
old filters are then one by one uploaded to the api_url endpoint specified
in their respective configurations.

A simple sleeping for the upload thread is not suitable, since when the
module receives a signal to terminate we still have a set of Bloom filters
possibly containing data. On the other hand waiting for the sleeping thread
to wake up is also not tolerable since the termination could take in worst
case scenario up to the upload interval. Given these constrains we’ve de-
cided to use POSIX conditional variable with time-limited wait using the
pthread_cond_timedwait function.

On exit, the main thread signalizes it’s intent to the upload thread by
using pthread_cond_signal function and waits for the upload thread to
exit. The upload thread then uploads last set of Bloom filters and exits.
The thread execution model is depicted on figure 3.2.

3.4.3 Bloom Filter Upload
The upload of the Bloom filter set after each period and at the module ter-
mination is done using HTTP protocol. Each Bloom filter is sent to their
respective HTTP endpoints composed using specified api_url configura-
tion key and the span of information contained in the Bloom filter following
the <api_url>/<t_start>/<t_end> endpoint pattern. The t_start and
t_end are Unix Epoch time stamps (a positive integer) of the start and end
of the filter time range respectively.

The module performs a HTTP POST request to the composed end-
point with a serialized Bloom filter as a body of the request. For this, the
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Figure 3.2: Bloom History NEMEA module thread execution model

libbloom binary serialization format described in 3.3 is used unchanged with-
out any additional encoding. To ensure that the binary data in the body
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of the request are accepted, we set Content-Type header of the request to
application/octet-stream.

The HTTP communication in the Bloom History module is implemented
using libcurl library [40] which is developed under license derived from and
compatible with the MIT license [41]. Specifically, we use the easy interface
which is synchronous, efficient and relatively easy to use.

For each of the requests a new connection is created since the endpoints
can be different. This is done by using the curl_easy_init function. The
parameters for the connection are all set using the curl_easy_setopt in-
cluding the URL, HTTP headers, HTTP method and a buffer with the
POST body. Notably, libcurl computes the length of the request body au-
tomatically using the strlen function. In our case this is not correct since
we are sending binary data which can contain null byte and can result in
libcurl sending only part of the specified buffer. To avoid this kind of error,
CURLOPT_POSTFIELDSIZE option is used to set the correct buffer length.

The constructed request is then sent using the curl_easy_perform
function. Since we are using the synchronous interface, there is no need
for callback functions and the response code can be easily checked using
the curl_easy_getinfo with CURLINFO_RESPONSE_CODE parameter. Apart
from HTTP redirects which are handled automatically by libcurl, all re-
sponse codes different than 200 OK are considered to be an error.

The request can be optionally encrypted when https:// scheme is used
in the api_url configuration key.

3.5 Bloom History Aggregator Service
The Bloom History Aggregator Service described in section 2.4.2 is a Python
application build using the Flask micro web framework [42] with bindings
to libbloom for Bloom filter data processing and serialization. Overlooking
some light logic around Bloom filter storage, the main purpose of this service
is to provide a HTTP API around libbloom.

A simple file system structure is used for Bloom filter storage. A Flask
Instance Folder is used to store the data. Its location on the file system
is dependent on the style of the service installation. Under the data root
path one folder per network id is created each containing files named using
<t_start>-<t_end>.bloom pattern where t_start and t_end are Unix
Epoch time stamps denoting the start and end of the contained data span
respectively. The network identificator is a positive integer. The intention
is to use the same network identificators across the whole system described
in this thesis.
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The intended setup for this service is via uWSGI [43] application server.
An example uWSGI server configuration for this Flask web application is
available on the enclosed media along with SystemD service file, documen-
tation, build instructions and full list of dependencies. A test suite is also
included to verify full functionality on the target system.

Since this service leverages the extended libbloom for Bloom filter ma-
nipulation, it needs to be installed on the system to be fully functional.
Also, because of the bindings to libbloom, building this service requires a
C compiler.

The Bloom History Aggregator Service is developed and released under
the Apache 2 license [39].

3.5.1 API
Bloom History Aggregator Service HTTP API is designed to be stateless.
This means that requests are independent of each other and no session
context needs to be held on either server of client.

The API endpoint segments written in angle brackets are used as a
named pattern. Patterns with the same name represent the same type
across all endpoints.

The id must be unique positive integer identifying a network prefix.
The t_start and t_end must be Unix time stamps (i.e. a positive integer)
forming a start and end of time range respectively.

The API consists of two endpoints implementing multiple HTTP meth-
ods:

POST /<id>/<t_start>/<t_end>
Upload new Bloom filter. The request body must contain only se-
rialized Bloom filter described in 3.3. and Content-type must be
application/octet-stream.
The filter is written to a file in the <id> directory under the Flask
instance path using <t_start>-<t_end>.bloom file name pattern.

GET /<id>/<t_start>/<t_end>
Get union of Bloom filters spanning the given time range. The re-
sponse body contains single Bloom filter in the binary serialized form
described in 3.3 merged from all filters within the range given by
t_start and t_end.
Since the Bloom filters are stored as a files with the given time stamp
range the resulting filter union cannot be precise. The Bloom filter
time range must be fully contained in the request time range for it to
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be included in the aggregated Bloom Filter response. If the requested
range does not include any Bloom filter file, the service returns HTTP
code 404 Not Found.
Response Content-type is set to application/octet-stream.

DELETE /<id>/<t_start>/<t_end>
Delete Bloom filters in time range specified by t_start and t_end.
This endpoint is intended to be used for deletion of history in case a
DDoS or any other malicious traffic got into the Bloom filters.
The service deletes Bloom filters filter under the <id> directory within
the specified range.
Similarly to the GET method on this endpoint, the time range is exclu-
sive and if the range is empty, HTTP code 404 Not Found is returned.

GET /health
A simple health check endpoint. Responds with HTTP code 200 OK
if the API is in an operational state. This can be used for automated
service readiness probe.

3.5.2 Libbloom bindings
As mentioned earlier, this service is internally using the extended libbloom
for Bloom filter manipulation. This is achieved through C Foreign Function
Interface for Python (CFFI) bindings [44] which allows to interact with
almost any C code from Python.

The CFFI offers several ways of interfacing with the C libraries. We’ve
decided to use out-of-line API mode which, instead of binary level, accesses
a C library at the level of C. This offers the most flexibility and speed
compared to the binary level mode. In this mode, C source is generated
containing the functions and structures needed, which is then compiled by
a C-compiler into an intermediate shared object. This object is then used
by the Python process instead of directly binding to the binary interface of
the target library. However, there is one downside to this mode; if we want
to leverage the system installed libbloom instead of letting it be compiled by
the CFFI, we need to provide a C functions wrapping the target library. In
our case, this is a small subset of the libbloom functions and does not pose
a serious issue. This tiny wrapper needs to be handed over to the package
global cffi.FFI object set_source method along with a list of dynamic
libraries for linking.

The CFFI also needs definitions of the target C functions and structures
to be able to generate the Python bindings. This C definitions are parsed
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by a Python library. Because of this, the definitions can use only structures
defined in this source, standard C data types and cannot contain #include
directives. The definitions are then loaded to the cffi.FFI object by using
the cdef() method.

The sources handed over to CFFI are then compiled by calling the
cffi.FFI object compile() method. This produces the shared object
bridging the libbloom and the Bloom History Aggregator Service. How-
ever, to be able to produce a Python binary package using its standard tool
chain, the setup.py file needs to include cffi_modules option pointing to
the FFI object with all sources and C definitions loaded.

The resulting shared object can then be imported from Python as a
native extension package.

The writing of Bloom filters received from a client in a body of a HTTP
POST request is handled without usage of the bindings to libbloom. How-
ever, to merge multiple Bloom filters we use the bloom_file_read function
which returns only a pointer to the bloom structure. We then simply pass
the pointers to the libbloom bloom_merge functions. This is very efficient
since transfer of many large memory chunks between native Python types
and types used in the C extension is avoided.

Only place where a transfer of large memory chunk from C extension to
a Python type occurs is when the final Bloom filter serialized to a buffer is
returned in a HTTP response to the caller. This is done by unpacking the
C byte array to a Python bytes object. Since the C array already contains
a wire format of the final Bloom filter, this is all that needs to be done to
prepare the response data.

By using the CFFI bindings, we’ve been able to avoid duplication of
Bloom filter manipulation logic and achieve almost native speeds of pro-
cessing while keeping the flexibility and ease of use of the Flask web frame-
work.
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Chapter 4
Evaluation

In this chapter, we describe in detail method and show the results of per-
formance testing of each of the separate modules described in the previous
chapter.

The performance measurement of each of the modules was done on a
dedicated machine with no other load than the test itself. The concrete
parameters of the test environment are listed in table 4.1.

CPU: Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz
RAM: 8064MiB
DISK: KINGSTON SV300S3
OS: Fedora release 28 (Twenty Eight)
Kernel: 4.17.3
CC: gcc version 8.1.1 20180712 (Red Hat 8.1.1-5) (GCC)

Table 4.1: Test environment specification

4.1 Prefix Tags NEMEA Module
For testing of the Prefix Tags NEMEA Module, we’ve measured throughput
of records per second based on the number of networks configured. All of the
configured networks used a /24 prefix and each configuration had exactly
30 million randomly generated records with destination address uniformly
distributed over the networks. None of the source IP addresses was from
the configured network ranges.
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The generated records were read by the NEMEA module from a file
stored on the test system disk. To make sure that the module performance
is no capped by disk read bandwidth, we’ve used dataset that fully fits to
the available system memory and preloaded the data to file system cache of
the operating system. To avoid introducing additional overhead, the output
of the module was dropped during execution.

The module was executed five times for each of the configurations. The
measured metric is mean user space CPU time of the five test executions
used by the process as reported by the time utility. We’ve also executed the
module in a mode to match source only, destination only and both source
and destination IP address.

The throughput of records per second based on number of configured
networks with all three modes of module operations is shown on figure
4.1. As expected, there is clearly visible linear decrease in throughput with
the rising number of configured network prefixes. Despite our expectations,
matching on source ip address only is significantly faster than the other two
modes. In our configuration and testing dataset, this means linear matching
of all rules and then drop of the record since the source IP addresses were
generated so that it does not match any of the configured networks. Also
there is very little difference between destination only and both source and
destination IP address matching. This clearly shows that the actual prefix
matching is much less CPU demanding than module data input and output
processing.

As shown in the results, we’ve exceeded the requirements set in section
2.1 by order of magnitude even with simple linear matching method. Since
we currently have no use-case for large number of networks, this is sufficient.
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Figure 4.1: Number of records processed by Prefix Tags NEMEA Module
per second based on number of configured networks

4.2 Bloom History Aggregator Service
For deployment of Bloom History Aggregator Service we are interested in
latency of end-to-end request and the speed of Bloom filter merging via the
CFFI interface.

Since the merging speed is dependent on the size of the Bloom filter byte
array only, we keep the false positive rate constant in this experiment and
change the size of a Bloom filters between given testing sets. Each of the
Bloom filters used for this experiment was filled to the 80% of its capacity
with random elements. The actual size of a serialized Bloom filter designed
to hold given number of records at set false positive rate is shown in table
4.2.

The metric measured in this experiment is mean real time reported
by the time utility of 10 requests since we are interested in the end-to-
end latency of this service. We infer the average time taken to merge two
Bloom filters together by the Flask application by subtracting the transfer
overhead from the total request time.

The transfer overhead is a time taken to download a single Bloom filter.
In case of our testing setup, this is composed of curl sending request to the
service on local machine, loading and serialization of the filter to Python
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Capacity FPR Size (MB)
100000 0.01 0.120
1000000 0.01 1.2
10000000 0.01 12
100000000 0.01 115

Table 4.2: Size of a serialized Bloom filter based on designed capacity and
false positive rate

object, composition and transfer of the Flask response over the uWSGI
application server Unix socket to Nginx web server and transfer from Nginx
back to the curl client. The data path is visualized on figure 4.2. This
testing setup is very similar to an expected production deployment. Only
difference is that the client would send the request over a computer network
instead of machine local interface.

Figure 4.2: Request data path in the Bloom History Aggregator Service
testing setup

During the testing, we’ve noticed that even the fastest persistent storage
we had available was limiting the service performance. To test the actual
service limits, we’ve decided to limit the number of Bloom filters so that
they can be fully preoloaded to the file system cache of the operating system
for the given test.
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The time taken to merge the given number of filters along with the
measured transfer overhead described above and the average time taken to
merge two filters together based on the designed Bloom filter size is shown
in table 4.3. As can be seen, the time to complete the request and time
taken per one filter grows proportionally with the Bloom filter size.

Capacity Merged Count Time (s) Overhead (s) Time/filter (s)
100000 100 0.033333 0.021 0.000123
1000000 100 0.230667 0.051 0.001797
10000000 100 2.286500 0.298 0.019885
100000000 50 15.156833 2.895 0.245237

Table 4.3: Bloom History Aggregator service performance

Since the main limitation of the Bloom History Aggregator Service is
the persistent storage, some further optimizations might be needed in case
of larger deployments. For example decreasing the time range granularity
of older Bloom filters by periodic server-side filter merging to a larger time
ranges is possible.

4.3 Bloom History NEMEA Module
In case of Bloom History NEMEA Module, the throughput of records per
second that can be ingested and inserted into a Bloom filter is critical.

We’ve decided to configure only one network prefix for this test scenario
and measure the effects of changing Bloom filter designed capacity and false
positive rate on the throughput of records per second.

To simulate the real load as close as possible a dataset created from
an actual production records was used in this experiment since a generated
dataset would most likely miss any hidden patterns commonly found in real
network communication. For example it is reasonable to expect a time-
proximity clustering of IP addresses which in turn affects access patterns
to the byte array of a Bloom filter in a real network scenario. Since the
memory used by a Bloom filter can be considerate, this could potentially
affect performance due to cache misses. As per design, we’ve filtered out any
flows not originating from the configured network and limit the remaining
dataset to 20 million records.

The time measured is from first received record to last record processed.
The data were served from a local file which was preloaded to a file system
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cache beforehand. Also for the purpose of this measurement, the upload
thread was disabled to avoid any accidental inconsistencies across the mea-
surements.

Results of the measurement are shown on figure 4.3. The initial steep
performance decrease for small Bloom filter sizes is caused by the filter
fitting into L2 and L3 CPU cache respectively. Beyond the initial rapid
decrease, there is only a small performance penalty for increasing the Bloom
filter size. The steep decrease of performance for small false positive rate is
also not surprising since the optimal number of hash functions used by the
Bloom filters has logarithmic dependency on the false positive rate.

Figure 4.3: Number of records processed by Bloom History NEMEAModule
per second based on Bloom filter configured capacity and false positive rate

Similarly to Prefix Tags NEMEA Module, we’ve exceeded the require-
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ments set in section 2.1 almost by order of magnitude even with model
using single worker thread.

51





Conclusion

The primary objective of this thesis was to design and implement a sys-
tem that provides information in a fully automated manner describing the
normal operation of a computer network which can be used for detection,
diagnosis and possible mitigation of DDoS attacks. Based on the require-
ment analysis a network profile was designed.

The network profile is composed of two components, both of which are
built using data extracted from a network flow information using the NE-
MEA system developed by CESNET a.l.e..

The first component of the profile gives an information about expected
levels of traffic based on its long term observations and is provided by the
Network Traffic Level Forecast Subsystem. The results of the Prophet fore-
casting model evaluation performed on the data collected from CESNET2
network show, that the Network Traffic Level Forecast Subsystem has pre-
dictable error growth even in presence of a large anomalies in the training
data and is kept under 40% in the 24h forecast period.

The second component of the network profile provides efficiently en-
coded set of entities which historically communicated with the protected
computer networks in a given time period. This information is provided by
the Network Communication History Gathering Subsystem which is a novel
and scalable implementation of History-based IP filtering DDoS mitigation
method that provides theoretical basis of this component.

The Network Communication History Gathering Subsystem is build
around Bloom filters, a probabilistic space-efficient data structure, as the
sole storage of the information. This design decision allows to fit a set of
ten million distinct network entities into just 12MB of memory at 0.01 false
positive rate. Together with constant element membership query complex-
ity this makes it directly usable in a packet filtering scheme of a DDoS
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Conclusion

scrubbing center at the edge of a protected network.
The results of a performance measurement show that the implemented

system is suitable even for deployments on networks communicating with
over a hundred million of distinct network entities which vastly exceeds
requirements for its intended deployment.

While the resulting network profile is designed with packet filtering sce-
narios on edge of the network as one of its use-cases, methods of its in-
corporation in broader more complex DDoS mitigation scheme needs to be
explored in future research.

The implemented NEMEA modules were successfully contributed to the
upstream project.
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Appendix A
Acronyms

API application programming interface.

CFFI C Foreign Function Interface for Python.

CSV comma-separated values.

DDoS Distributed Denial of Service.

DNS Domain Name System.

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol.

IPFIX IP Flow Information Export.

JSON JavaScript Object Notation.

MAE mean absolute error.

MAPE mean absolute percentage error.

NEMEA Network Measurements Analysis.

OLS Ordinary Least Squares.

RMSE root mean squared error.

TCP Transmission Control Protocol.
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Acronyms

UDP User Datagram Protocol.

UniRec Unified Record.
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Appendix B
Contents of enclosed CD

readme.txt.........................file with CD contents description
src

impl ................... the directory with implementation sources
thesis........... the directory with LATEXsource of the thesis text

text
DP_Křesťan_Filip_2019.pdf....... the thesis text in PDF format
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