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Abstrakt

Aplikace TeamViewer je jedńım z nástroj̊u často použ́ıvaných jednotlivci i
organizacemi pro vzdálený př́ıstup z d̊uvodu správy zař́ızeńı, komplexńı pod-
pory zákazńık̊u či spolupracovńık̊u nebo pro zpř́ıstupněńı zdroj̊u uživatel̊um
pracuj́ıćım z domova nebo jiného mı́sta. Umožněńı př́ıstupu v takovémto roz-
sahu s sebou ale nese bezpečnost́ı rizika a vyžaduje pečlivé monitorováńı.
Tato závěrečná práce se zabývá analýzou aplikace TeamViewer se zaměřeńım
na jej́ı śıt’ový provoz. Na základě této analýzy navrhuje postup pro detekci
této komunikace a rozlǐseńı druh̊u aktivity v jej́ım šifrovaném obsahu za užit́ı
strojového učeńı. Při detekci bylo dosaženo úspěšnosti 99.9 %, při pokusech o
rozlǐsováńı druh̊u aktivity pak přinejmenš́ım 84.9 %.

Kĺıčová slova TeamViewer, vzdálený př́ıstup, IP toky, rozpoznáváńı apli-
kace, analýza provozu
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Abstract

The TeamViewer application is one of the most prevalent tools for allowing
individuals and organisations alike to utilize remote access to manage remote
devices, provide complex support to customers or colleagues or to allow access
to resources to users working from home or other remote location. Allowing
this level of access, however, poses a severe threat to security and needs to
be monitored closely. This thesis analyses the TeamViewer application, fo-
cusing on its network traffic. Based on this analysis, the thesis proposes a
way to detect TeamViewer communication and distinguish between activi-
ties in its encrypted traffic utilizing machine learning. TeamViewer detection
reached 99.9 % accuracy, while the experiments distinguishing between activ-
ities reached at least 84.9 %.

Keywords TeamViewer, remote access, IP flows, application recognition,
traffic analysis
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Introduction

Even before the recent pandemic-related lockdowns and the resultant rush to
move various tasks online, individuals and organisations both were expanding
their use of remote access functionality at a growing pace to be able to manage
remote devices, provide complex support to customers and colleagues or to
provide access to resources to users working from home or other remote loca-
tion. As the interest in such tools increased, a number of applications emerged
to serve this growing market. These include, among others, applications such
as LogMeIn [1], AnyDesk [2], Splashtop [3] or, indeed, TeamViewer [4].

TeamViewer first released in 2005 and allowed users to simply share their
screen with a partner, to transfer files to them or to gain direct control
and interact with their desktop [5]. As development continued, more fea-
tures were added over time, most notably audio/video conferencing. In 2021,
TeamViewer is one of the more prevalent tools for accomplishing these tasks –
the developer of the application claims to service more than 200 million users
worldwide [6].

There are reasons other than TeamViewer’s feature list that can also help
explain its success. It offers a free version under the condition that the appli-
cation is used in personal, non-commercial fashion [7] and supports a broad
variety of platforms [8], allowing cross-platform use. Another important as-
pect is simplicity of use. Basic usage of the application requires essentially
no setup after installation and no account is required either – the application
automatically generates credentials which suffice for immediate use.

However, all of these conveniences coupled with the level of access granted
by the application pose a severe threat to security and can be exploited in
various ways. Many of the common abuses of remote access software take
the form of social engineering, such as technical support scams, where the
scammer impersonates a support technician and demands payment for fake
services, attempts to gain access to the victim’s system to steal sensible data
(such as banking details) and so on. Another way remote access applications
can be used in criminal activity is by incorporating them into RAT (Remote
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Introduction

Access Trojan) malware. As [9] notes, attackers will create special email at-
tachments, web-links, download packages and various other means of luring
the user into installing the software and allowing the attacker access. In the
case of TeamViewer, malware examples such as TeamSpy or Skywyder are
mentioned by [10]. This makes the ability to detect the activity of applica-
tions such as TeamViewer in a network a valuable tool for detecting suspicious
behavior. That could be the application being used at all (e.g., if forbidden
by policy) or being used at odd times, which might point to the presence of
malware in the network or other malicious activity.

The first chapter of the thesis shall analyze the TeamViewer application
(using the version available at the start of writing, 15.16.8), its usage and
its network traffic. Related works will be discussed, with one investigating
packet-level characteristics of TeamViewer communication and the other aim-
ing to distinguish between different activities in TeamViewer’s encrypted traf-
fic based on its statistical features. Flow-based view of network traffic and
relevant tools for its monitoring and capture will be explained.

Further chapters go into detail describing the experimental part of the
thesis. This includes the creation and annotation of datasets, feature ex-
traction and the final feature vector, machine learning models used and the
design of the experiments conducted – binary and class-based classification.
Binary classification explores the possibilities of TeamViewer traffic detection,
whereas class-based classification attempts to distinguish between types of
activity conducted in the encrypted traffic. An examination of the results
follows.
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Chapter 1
Background

This chapter aims to establish the required theoretical knowledge needed for
the rest of the thesis. First, an introduction to flow-based network monitoring
is given. Then, the TeamViewer application and its network behavior are
analysed. With this having been established, two relevant works exploring
the TeamViewer application are discussed.

1.1 Flow-based network traffic monitoring

Network monitoring is used for a number of purposes, ranging from trou-
bleshooting and performance evaluation to aiding in network defence. Two
general approaches to network monitoring are worth discussing in the context
of this thesis: packet-based and flow-based. The basic differences between the
two are the scale at which network traffic is viewed and consequently the level
of detail of possible analysis.

The packet-based approach is concerned with every packet sent in the
course of communication between devices, allowing for each unit of communi-
cation to be inspected. Different aspects of packet content may be inspected,
ranging anywhere from simple IP header values to various payload contents.
However, the packet-based approach becomes less relevant in analyzing en-
crypted traffic as the pertinent data becomes inaccessible. Another potential
issue is the large file size of stored captures (considerably larger compared
to the results of a flow-based approach) and the overall higher performance
requirements. Packet-based approach will not be described further in this
section as the thesis focuses primarily on flow-based monitoring. However,
relevant basics shall be discussed in section 1.3.1, in which a related work
makes use of Wireshark, an application using this approach.

Unlike the packet-based approach of preserving every detail, the flow-based
approach instead generates a general summary of a communication, using a
set of its attributes to uniquely identify it as a separate flow. The flow usually
contains metadata such as timestamps or aggregated amounts of transferred
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1. Background

data and it may be expanded to include further information (e.g., aggregated
TCP flags).

1.1.1 IP flow definition

A network flow is described in RFC 3917 [11] as ”a set of IP packets passing
an observation point in the network during a certain time interval. All packets
belonging to a particular flow have a set of common properties.” This set of
common properties (such as the contained addressing information across var-
ious network layers) is called a flow key. A flow generally spans the timeframe
between the first and the last packet with a given flow key being observed.
The observation of the flow ends when certain predetermined conditions are
met. Examples of such conditions include observing the natural end of a con-
nection (e.g., TCP termination), an idle timeout (i.e., elapsing the longest
allowed time between packets) or an active timeout (i.e., reaching the longest
allowed duration of a flow) [12].

RFC 7011 [13] provides a common example of a flow key that may be used:
source and destination IP address, source and destination port and the trans-
port protocol used. As the combination is directional (one side is designated
as the source and the other as the destination), it could be expected that a
network flow specified in this manner groups packets headed in a single direc-
tion, source to destination. In RFC 5103 [14], such a network flow is described
as unidirectional (uniflow). A bidirectional flow (biflow) is then comprised of
packets headed in both directions – the biflow is effectively built from two
uniflows, which share the same directionless attributes (e.g., protocol) and for
which the source and destination attributes are the same, only opposite (e.g.,
the source IP address of the first is the same as the destination IP address
of the second and so on). The biflow itself is assigned source and destination
addressing information in the same format as a uniflow. Different methods
of assigning direction to a biflow exist, however, the relevant method for this
thesis does so based on the direction of the first packet observed in the biflow.
For additional direction-specific data (e.g., packet count), the directionality
is maintained, i.e., two separate values are kept, one for the forward direc-
tion (source to destination), and one for the reverse direction (destination to
source).

1.1.2 IP flow meters and ipfixprobe

For the generation of flow data from either live or captured traffic, tools re-
ferred to as flow meters (sometimes also as flow exporters) are used. A flow
meter is described in [12] as such: ”A flow meter generates flow data - which
contains information about each connection observed on a network - from a
stream of observed packets.”
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1.1. Flow-based network traffic monitoring

In the course of the metering process, flow records are created for newly
recognized flows, updated as more packets belonging to the flow are observed
and ultimately, when the flow is considered over, its corresponding record is
exported and removed from the flow record table [11]. There are various flow
meters available for use, such as Cisco’s Joy [15], YAF (Yet Another Flowme-
ter) [12], CICFlowMeter [16] or, indeed, ipfixprobe [17], which is used in the
course of this thesis as the source of data for the TeamViewer analysis. Ip-
fixprobe is a flow meter implemented as a module in the NEMEA system,
where the ”NEMEA (Network Measurements Analysis) system is a stream-
wise, flow-based and modular detection system for network traffic analysis. It
consists of many independent modules which are interconnected via communi-
cation interfaces and each of the modules has its own task.” [18].

According to its documentation [17], ipfixprobe is designed to create bi-
flows (identified by the source and destination IP address and port number,
and the protocol used) either from input PCAP files or directly from live traf-
fic on a network interface. If a PCAP file is used as a source, the entire file
is processed and exported to provided output interface (this can mean saving
to a file or passing the flow data to another module via, e.g., a Unix domain
socket). If traffic is captured live on a network interface, flows are exported
as they end. Command line options are available to alter the conditions for
ending a flow. For example, -c NUM can set a limit to the number of packets
to be captured before exporting and -t NUM:NUM can be used to change the
active and inactive (idle) timeout values. By default, there is no limit to the
number of packets, the standard active timeout is 5 minutes and the standard
inactive timeout is 30 seconds, i.e., a flow will be ended if no activity related
to it was registered in the past 30 seconds or if 5 minutes elapsed since its
beginning.

A variety of parsing plugins is supported [17], allowing additional informa-
tion (e.g., protocol-specific fields or flow metadata) to be extracted. Relevant
plugins for this thesis are:

IDPContent The Initial Data Packets Content plugin adds to the default
exported flow features two new ones: idpcontent and idpcontent rev.
These contain the first 100 bytes of the TCP/UDP payload in the first
packet in the forward and reverse direction, respectively.

PSTATS The Packet Statistics plugin adds metadata about the packets
observed at the beginning of the biflow – this includes lists of their
TCP/UDP payload lengths, timestamps, TCP flags (0 if not applicable)
and their directions in the biflow. By default, this is done for the first
30 packets.
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1. Background

1.2 The TeamViewer application

TeamViewer is most commonly known as a tool for the control and manage-
ment of remote devices. In addition to that, it allows file transfer to and from
those devices, implements audio and video conferencing in the Meetings fea-
ture and a text chat option is also offered. TeamViewer can currently be used
on Windows, Mac OS, Chrome OS and various distributions of Linux and of-
fers apps for Android and iOS [8], allowing broad cross-platform interaction.
The developer lists officially supported Linux distributions, noting that the
client may possibly work on others. Originally, TeamViewer on Linux would
be used by running an adapted Windows version utilizing Wine, described as
a compatibility layer capable of running Windows applications [19]. In August
of 2018, the first native Linux client was released [20]. This allowed for the
implementation of some missing features, bringing the Linux version closer
to its peers on other platforms. At the time of writing, however, the Linux
version still does not support the Meetings feature to allow for video or audio
communication between users.

1.2.1 Basic usage

The following section describes the default ”out-of-the-box” behavior of the
application. This can be further customized through a variety of security
settings, such as user-defined passwords, allow/block lists etc.

When installed, a unique, device-specific TeamViewer ID (referred to as
TID from now on) is automatically generated ”based on various hardware and
software characteristics” [21] alongside a temporary password. The TID is
generally 9 or 10 digits long and is used as the identifier of the device, not the
user. For audio/video conferencing, a meeting ID is generated instead at the
meeting’s creation and is to be shared out to other users to allow them to join.
The user can begin a session with just the destination device’s TID and its
temporary password (for file transfer and remote desktop) or the meeting ID
for conferencing. These features do not require the used to register an account
and log in (the text chat feature does).

A unique TID will also be generated on a virtual machine, with the re-
sulting TIDs seemingly belonging to different number ranges. Two physical
devices and two virtual devices have had TeamViewer installed: a physical
and a virtual Windows machine and a physical and a virtual machine with a
Linux distribution (Linux Mint and CentOS 7). A 10 digit TID was generated
on both physical machines, beginning in 1 48x xxx xxx. On both the virtual
machines, a 9 digit TID was generated, with the CentOS device generating
a TID beginning in 842 xxx xxx and the Windows device beginning in 682
xxx xxx. A deeper analysis would be required to reach conclusions with any
degree of certainty, but this difference may be useful to differentiate between
physical and virtual devices.
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1.2. The TeamViewer application

1.2.2 Security

The application is designed with ease of use in mind – once installed, there is
very little required of the user to start using the application. A TeamViewer
account or a user-specified password are optional as the application generates
a random password alongside the TID. The standard length of this password
is 4 characters, with lengths of 6, 8 and 10 also being an option. By default,
this random password is kept until application restart, at which point a new
password is generated. However, it can also be set to either automatically gen-
erate a new password or to offer this option after each session. The generation
of such passwords can be disabled.

Assuming default configurations of the devices, the password and the de-
vice TID are sufficient credentials for starting, e.g., a remote control session.
The weakness of the default password, coupled with the fact that the TIDs
are visible in network traffic (see section 1.3.1), appears to be a severe secu-
rity flaw. Should a device with TeamViewer in default configuration be left
running for a long period of time, its TID could be eavesdropped and the
password guessed. To help defend against such attacks, the developer claims
in [21] that ”the application exponentially increases the latency between con-
nection attempts” in response to repeated failed authentication attempts. This
persists until the correct password is entered. Although this may address the
danger of brute-force attacks against the weak default password, it is not clear
whether or not this measure might be abused to perform a denial-of-service
attack of sorts.

While some information about the traffic can be gleaned from the propri-
etary protocol used to carry it, this relates specifically to information regard-
ing the connection itself, as opposed to the activity contained in it. According
to [21], the traffic is encrypted with AES(256-bit). The key is generated by
one of the clients, then encrypted with a public key of the other client and
shared. TeamViewer uses RSA public/private key pairs, with a server acting
as a proxy for safely sharing public keys between clients (all clients know the
server’s public key).

1.2.3 Important options

While TeamViewer offers a wide variety of options to help configure and cus-
tomize the user experience, two specific ones are important to discuss in the
context of the application’s network behavior - Incoming LAN connections
and Use UDP.

LAN use

Using a TID or the meeting ID is the intended behavior for connections made
over the Internet. In [22], the following is explained by the developer: it is
possible to enable the application to also accept LAN connections, or to accept
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1. Background

LAN connections exclusively. If the LAN only option is chosen, TeamViewer
disconnects from the Internet and TIDs can no longer be used. Instead, the
application displays the device’s local area network IP address for use as the
new identifier of destination device. As this thesis focuses on connections made
over the Internet, this option was disabled during the conducted experiments
and was not explored further.

Allowing UDP

This option is enabled by default and recommended by the developer. Turning
the option off does not disable the use of UDP entirely (it is still used especially
for audio/video calls). Instead, having the option turned on allows a pair of
devices to negotiate direct UDP communication. This is done via a maintained
TCP connection to a server (discussed in section 1.2.4), through which IP
addresses and port numbers are exchanged. This approach is discussed in
RFC 5128 [23], where it’s referred to as UDP hole punching – a method of
starting communication between two devices each behind a networking device
performing Network Address Translation (NAT).

Under normal circumstances, simply sending UDP messages to the other
device will only result in them being discarded, as they belong to no UDP
session known to the device running NAT. However, when the two devices
(prompted by the server) attempt to send messages to each other at the same
time, a UDP communication session will be opened for each of them at their
respective NAT device. If the destination IP-address:port-number pair that
caused the session to be opened matches the source IP-address:port-number
pair of the incoming traffic, the traffic will be recognized as belonging to
the session and allowed to pass through the NAT to the device behind it.
This way, the server helps establish the communication by choosing the port
numbers to use, distributing them to the devices and prompting them to start
communicating at the same time. This communication seems to only use both
destination and source port numbers higher than 30,000.

This is discussed in [10], where the claim is made that the connection
data (IP addresses and UDP ports) the TeamViewer server distributes to
the devices for setting up direct UDP communication can be observed in the
content of a specific packet in the client-server TCP communication. However,
this could not be replicated. Regardless, this UDP communication (or lack
thereof) can still be observed. For example, the same file transferred under
the same conditions with this option disabled will produce no observable UDP
traffic. Instead, the transfer will be noticeable in a TCP connection to a
TeamViewer server. With the option on, a direct communication between the
two devices can be observed, containing roughly the same amount of data as
in the previous TCP connection.

Table 1.1 demonstrates such comparison. The same file had been sent be-
tween devices in the same network, first with the option turned off, then on.
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1.2. The TeamViewer application

Table 1.1: Comparison of allowed and disallowed UDP
UDP setting Protocol Source IP Destination IP Source port Dest port Bytes Bytes reverse

Off TCP 192.168.1.103 188.172.246.174 1737 5938 150,830 1,211,416

On TCP 192.168.1.103 188.172.246.167 1722 5938 93,975 106,884
UDP 192.168.1.106 192.168.1.103 38433 60116 1,143,074 48,112

With the setting off, the bulk of the transfer took place through a proxy con-
nection to a TeamViewer server (188.172.246.174) and no related UDP flow
was observed. With the setting on, a UDP flow can be seen going directly
between the two devices, carrying the bulk of the data. During both captures,
no other flow had carried more than 42 kB. For the TCP connections, the rele-
vant statistic for the file transfer is the number of bytes in the reverse direction
as a client-initiated TCP connection to the server is used (the receiving client
is thus considered the source of the flow). For the UDP communication, the
sending client is considered the source in this instance.

1.2.4 Network behavior

Upon closer examination, TeamViewer network traffic exhibits certain spe-
cific characteristics which can help better recognize it. As mentioned in [24],
the connection establishment is not encrypted and while some obfuscation
is employed further in the payload, common values (referred to as magic
numbers from now) identifying the proprietary protocol can be found in the
TeamViewer protocol data unit - either 0x1724 or 0x1130. This is further
discussed in section 1.3.1.

An aspect of the traffic that does not require payload inspection is men-
tioned in the developer’s security overview [21]. Here, they go on to dis-
cuss (amongst other things) common characteristics of communication with a
TeamViewer server (these do not apply to client-to-client UDP communication
discussed in section 1.2.3). Namely, these include specific port numbers and
IP addresses used.

Destination port numbers
When the client attempts to communicate with the server, it will do
so on one of a set of predefined destination port numbers. Any UDP
communication with a server will use port 5938. The primary option
for TCP is also 5938, while some traffic, such as update checks, will use
port 443, which is also the first port number the application will fail over
to in case port 5938 is unavailable. Finally, port 80 may be used as a
last resort at the cost of decreased performance (the overhead increases
and automatic reconnection will not function). This behavior can vary
on some platforms as is demonstrated in table 1.2 (original overview
from [25]).
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1. Background

Destination IP addresses
TeamViewer servers use IP addresses from various IP address ranges,
which are claimed to frequently change [21]. An address associated with
a server is thus identified on the basis of its pointer record (PTR) in the
Domain Name System (DNS). This record is used to look up the name
associated with a provided IP address (this is commonly referred to as re-
verse DNS lookup). A TeamViewer server IP address will return a name
in the format *.teamviewer.com. For example, at the time of writing,
the reverse lookup of 213.227.186.144, a TeamViewer IP address observed
in a capture, returns ES-MAD-ANX-R013.teamviewer.com. This more
specific format, [country]-[city]-[provider]-R[xxx].teamviewer.com, can
be commonly observed when inspecting IP addresses used by TeamViewer
servers. Provider in this context refers to data center providers – in the
example given, ANX likely refers to ANEXIA Internetdienstleistungs
GmbH, a data center provider used by TeamViewer [26].

Table 1.2: Used destination port number overview
OS TCP/UDP Port 5938 TCP Port 443 TCP Port 80

Windows Yes Yes Yes
macOS Yes Yes Yes
Linux Yes Yes Yes

ChromeOS Yes Yes Yes
iOS Yes No Yes

Android Yes Yes Yes
Windows Mobile Yes No No

In addition to specific values, a pattern of behavior can also be observed.
As the application starts, a DNS query is sent, requesting the IP address for
routerX.teamviewer.com, where X stands for a number. Once the query
is resolved, a client-initiated outbound TCP connection is established and
maintained to allow communication with the server. To keep the connection
open, roughly every 55 seconds, a keepalive pattern repeats. The client sends a
packet with TeamViewer payload, which the server acknowledges with a TCP
ACK reply. The same then happens in reverse and after about 5 seconds, the
client sends another such packet and the server again acknowledges. According
to information provided by the Wireshark dissector discussed in section 1.3.1,
the first two TeamViewer payloads carry the CMD KEEPALIVEBEEP command,
whereas the last one carries TeamViewer’s own CMD ACK command.
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Figure 1.1: Observed keepalive packets (Wireshark graph)

1.3 Related works

1.3.1 Wireshark dissector

An analysis of the TeamViewer application had been conducted by Braden
Thomas in [24] (archived version, reposted in [27]). To better understand the
application’s network behavior, he claims to have conducted a closer examina-
tion by partially reverse-engineering TeamViewer’s Mac OS client (version 7).
The information gleaned from the disassembly, alongside further information
provided by the application’s logs, were then used to create a set of plugins
(called dissectors) for the Wireshark analyzer [28], allowing for the applica-
tion’s proprietary protocol to be analysed. Particularly relevant for this thesis
is the central, lower-level dissector, which serves to interpret a common part of
the TeamViewer payload. It is this specific dissector that shall be referred to
as the TeamViewer dissector. Based on the value of what Thomas [24] marks
as a TeamViewer command, the command-specific remainder of the data may
be passed to one of the specialized higher-level dissectors. A dictionary of
values and corresponding command names is provided.

Further development and analysis building on the original article was con-
ducted by [10] four years later, however, their version of the dissector was not
shared. The dissector is therefore explored in its original form. It was not
analyzed thoroughly or developed further in the course of writing this thesis
and related findings were verified independent of it. However, despite being
an old prototype (the information and the dissector had first been shared in
2013), some of the claims presented in the initial article were still successfully
reproduced. This suggests that to some extent, the dissector still functions
and warrants further examination.

Wireshark

An example of packet-based approach to network monitoring, Wireshark can
be described as a packet (or network protocol) analyzer. It allows the user to
either capture network traffic on a given interface or to import a capture file
in a variety of formats (at the time of writing, Wireshark uses the PCAPNG
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format as default for saving captures). Wireshark then attempts to extract
as much information from the provided packet data as possible, interpreting
the contents based on its knowledge of networking protocols. This is done
through specialized dissectors – the developer describes this process in their
guide to the application [29] as such:

”Each dissector decodes its part of the protocol and then hands off decoding
to subsequent dissectors for an encapsulated protocol. Every dissection starts
with the Frame dissector which dissects the details of the capture file itself
(e.g. timestamps). From there it passes the data on to the lowest-level data
dissector, e.g. the Ethernet dissector for the Ethernet header. The payload is
then passed on to the next dissector (e.g. IP) and so on. At each stage, details
of the packet are decoded and displayed. Dissectors can either be built-in to
Wireshark or written as a self-registering plugin (a shared library or DLL).”

How the dissector works

The dissector is written in the lua programming language as a self-registering
plugin. To use the plugin, the source file simply needs to be placed in Wire-
shark’s plugin folder. The plugin defines the protocol in question for Wire-
shark by creating a Proto (protocol) object, which handles the data processing.
To receive data from a lower-level dissector, a registration must be made in its
associated table of subdissectors. For example, in order for the TeamViewer
dissector to receive data from the lower-level TCP dissector, an entry must be
added to the TCP dissector’s tcp.port table, associating a port number (e.g.,
5938) with the TeamViewer protocol. In a similar fashion, the higher-level,
command-specific dissectors register in the subdissector table of the general
TeamViewer dissector, associating themselves with a specific command value.
Once the data from a lower-level dissector had been obtained, it is processed
based on the algorithm defined for the protocol in the plugin.

According to the article accompanying the dissector [24], a magic number
can be found in the first two bytes of the data. Two values have been observed
- 0x1130 and 0x1724 (big-endian order). Following the magic number, a value
specifying the type of command being sent can be found in the 3rd byte.
The magic number values distinguish between two command formats which
differ in header structure and in the use of obfuscation (0x1724 uses it almost
always while 0x1130 only sometimes). The obfuscation is done by bit rotation:
a subsection of the data (not including the aforementioned values) is rotated
to the left by one bit. Exploring and describing this further, [10] claims that
after reversing this process (where necessary), a broad variety of information
(e.g., TIDs, session IDs, OS type etc.) can be found in the deobfuscated
contents.
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Observed TeamViewer behavior

The most important aspect of TeamViewer communication gleaned from the
dissector results is the presence of magic numbers in the payloads - either
0x1724 or 0x1130. Their placement is dependant on the transport protocol but
mostly consistent (an exception is discussed in section 2.1.4). When TCP is
used, the magic numbers are placed at the beginning of the payload, unless the
payload is padded. Variable-length zero padding has been observed, pushing
the values further into the payload and requiring the padding to be stripped.
UDP on the other hand has been observed to consistently use the 12th and 13th

byte. The first 11 bytes display further identifiable patterns. For example, a
progressively incremented value can be observed in the first 4 bytes at certain
times, suggesting datagram numbering (in little-endian ordering).

It is claimed by both [10] and [24] that the byte following the magic number
contains a value representing the command being sent. Although this has not
been thoroughly verified as it is outside the scope of this thesis, it seems to
have merit. The dissector is accompanied by a dictionary mapping various
command names to the values found in this specific byte. The corresponding
command name of this value would on occasion match the suspected purpose
of the payload it was found in.

For example, when observing the keepalive traffic described in section 1.2.4,
the value contained in the first two payloads - 0x1B (27) - finds a correspond-
ing dictionary match of CMD KEEPALIVEBEEP. Similarly, when observing a file
being sent, the value found in the bulk of the payloads - 0x6b (107) - cor-
responds to CMD DATASTREAM. Further research in this area could help better
understand the proprietary protocol and possibly help glean more information
about the traffic from the pattern of commands being sent.

In their discussion of a particular command value, [10] mentions some
identifying information of the communicating parties being clearly visible in
a part of a TCP connection. When a device receives a message regarding a
requested connection to it, both the source and destination TIDs can be seen
(command value 0x16 (22) - CMD CONNECTTOWAITINGTHREAD).

This can be replicated and is shown in the following example: the TIDs
(in little-endian order) of the communicating devices can be seen, followed
by the IP address (in plaintext) of the TeamViewer server acting as a proxy.
The first four bytes contain the destination ID, the next four the source ID,
followed by a section containing the IP address.

Figure 1.2: TeamViewer ID values in payload (Wireshark)
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This is demonstrated in figure 1.2. The little-endian value of the first 4
byte sequence, 0x323360e6 (842 227 942 in decimal), contains a CentOS virtual
machine ID (connection destination). The value of the following sequence,
0x28b38744 (682 854 212 in decimal), contains a Windows10 virtual machine
ID (connection source). Finally, the IP address 188.172.246.170 can be seen
– this address was verified at the time of writing as a TeamViewer server
address through its PTR record (AT-VIE-ANX-R007.teamviewer.com). In
this manner, information identifying communication between specific devices
can be extracted from the traffic.

1.3.2 TeamViewer encrypted traffic analysis

The only publication I am aware of that focuses on identifying the activity in
encrypted TeamViewer traffic was authored by Altschaffel et al. [30] in 2013
and is based on TeamViewer version 7 (current version at the time of writing is
15). The paper seeks to introduce a method for distinguishing between classes
of encrypted traffic based on statistical properties of its constituent network
traffic flows. Binary classification (TeamViewer traffic or not) is not explored.
The work uses the open source WEKA machine learning software [31].

Four classes of encrypted traffic are recognized: audio, video and text chat
conversations and file transfer. This approach differs from the selection used
later in this thesis, where instead three principal classes are recognized: file
transfer, conferencing (represented by audio conversations and screen-sharing)
and remote desktop control.

Network flow data is captured for each chosen class and a vector of features
is generated to create a dataset (this dataset has not been publicized). In pro-
cessing the data, a self-developed feature extractor is mentioned to have been
used to generate a variety of information at three different levels of detail:
local, window-based and global. Local features contain packet-specific infor-
mation, such as packet length, capture timestamp etc. Both window-based
and global features concern themselves with statistical data about the network
flow at different scope. Global features take into account the entire network
flow, whereas window-based features consider smaller sections, broken down
either by the number of packets observed or by time elapsed. For generating
these features, a sequence of packet lengths and times (SPLT) of unlimited
size is used. Contrary to that approach, this thesis uses only the first 30
packets, as it might serve as a basis for a NEMEA module implementation.
Using an SPLT of unlimited size is not feasible at high network speeds due
to prohibitive performance cost, which is why NEMEA (and this thesis) limit
the SPLT to 30 packets.

Certain features are only used to derive others and then dropped. This in-
cludes features containing total values (such as the aggregate of packet lengths
across the whole flow) which are used to derive values relative to e.g., time or
chosen window-size. Ultimately, a set of machine learning models is trained
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and tested on a 66 % and 34 % splits of the dataset, respectively. Across all
the models, the class of encrypted traffic is claimed to be identified correctly
in the vast majority of cases (over 99.9 %). In conclusion, the authors discuss
the need to broaden the variety and size of the dataset and conduct further
research into feature selection.
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Chapter 2
Experiment design and dataset

creation

The experimental portion of this thesis is limited to a certain degree by the
availability of relevant network data. Two sources are currently available: bulk
capture option made possible in the CESNET2 [32] network and data captured
by hand in a local network. While it is possible to identify TeamViewer net-
work flows in a provided bulk capture, the specific activity contained in the
encrypted payload cannot be determined. As such, the data cannot be used
in training or testing a machine learning model for distinguishing between
contained activities.

Therefore, the decision was made to conduct two separate experiments
in machine-learning classification better suited to available methods of cap-
turing network flows. The first experiment explores binary classification for
distinguishing between TeamViewer and other network traffic, utilizing the
opportunity of capturing a larger amount of network flows in the CESNET
infrastructure. The second experiment, a proof-of-concept for activity classifi-
cation, aims to distinguish between three important classes of activity within
TeamViewer: file transfer, remote control and conferencing.

To support the experiment design, a smaller flow capture had been col-
lected locally to use in distinguishing between activity in encrypted Team-
Viewer traffic, and larger captures conducted at CESNET had been obtained
for binary classification. Two datasets had been created for binary classifica-
tion (one for training and one for testing), and one for the activity classifica-
tion. For the sake of brevity, the data gathered for the binary classification
experiment in the CESNET infrastructure shall be referred to as backbone
traffic data, whereas the data gathered locally for the activity classifier shall
be referred to as activity traffic data.

All the captured network data had been processed and exported by ipfix-
probe and saved in the CSV file format. The resulting network flows were
further explored and manipulated in an interactive notebook with the Python
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programming language using the following libraries: Numpy [33] and Pan-
das [34] for data analysis and manipulation, Scikit-learn [35] for machine
learning and related activities (e.g., feature evaluation) and finally, the Feature
Exploration Toolkit (FET) library [36]. FET was developed for the master
thesis by Daniel Uhř́ıček [37], implements further feature extraction (discussed
in section 2.1.6) and allows for convenient exploration of the dataset utilizing
scikit-learn functions.

2.1 Backbone traffic

The data for both experiments is processed in a similar matter with some key
differences. Therefore, the backbone traffic datasets shall be described fully
and the activity dataset shall be discussed in summary of relevant differences
between it and the backbone ones.

2.1.1 Traffic captures and the capture environment

The environments in which the data was captured differ to a large extent.
The backbone data is fed into ipfixprobe directly from a network interface
at the outer perimeter of the CESNET2 public network infrastructure. This
means all the potentially personal information, including the destination and
source IP addresses, has to be anonymized. It is therefore impossible to use
the destination IP address in labeling the flows. Two specific kinds of capture
were conducted:

• TCP traffic using ports 443 and 80, limited to known TeamViewer IP
addresses (found locally and verified by their PTR record)

• TCP traffic using port 5938, with no IP address limitation

For each, two separate captures were done, roughly a week apart. The port
and protocol combinations used are known TeamViewer combinations (see
section 1.2.4). Traffic capture of TCP on ports 443 and 80 had been limited
to known TeamViewer IP addresses. This was done because TeamViewer will
primarily use port 5938 for most of its traffic while the failover ports 443
and 80 are used for other very common purposes such as HTTPS and HTTP,
respectively.

An exploratory UDP capture on destination port 5938 had also been con-
ducted to examine the traffic. However, far fewer flows compared to the TCP
captures had been found, the vast majority of which had been identified as
TeamViewer traffic (roughly a 93:7 split). Furthermore, unlike with TCP, no
existing datasets containing similar traffic and captured in the CESNET2 net-
work are available. The gathering of sufficiently large dataset of UDP traffic
similar to TeamViewer’s would thus be considerably more difficult and require
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further analysis of other similar applications, expanding the scope of the the-
sis. Under the supervisor’s advice, the decision had been made to limit the
binary classification experiment to TCP traffic.

2.1.2 Live data capture and flow export

To begin with, live network traffic was sourced for ipfixprobe to process. For
the backbone data, ipfixprobe captured live traffic directly from a network in-
terface and processed it with the IDPContent and PSTATS plugins activated.
Each plugin would generate a separate result, which would then be exported
to its own separate output, containing plugin-specific flow features (the out-
puts were later combined for further processing). These flow data outputs
were exported into an intermediary product, which was then processed by the
NEMEA module logger [38]. This module allows for transforming the results
into a desirable format, in this case a CSV file.

Figure 2.1: Sources of network flow data

2.1.3 Flow aggregation

When capturing the backbone data, ipfixprobe was running under default
settings, including a 30 second idle timeout timer. This caused an issue with
TeamViewer’s connection-keepalive mechanism. As described in section 1.2.4,
TeamViewer maintains a TCP connection to a server (unless set to LAN only).
A small exchange of packets takes place between the client and the server
roughly every 55 seconds, with the exchange lasting about 5 seconds (first
packet to last packet). This means that the time period between the last
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packet of the previous set and the first packet of the next set is about 50
seconds. As the idle timeout value effectively specifies the largest time period
of inactivity before a flow is considered over, an inactive connection to a
TeamViewer server only sending keepalive messages will continuously generate
new flows until some activity is initiated.

This can be avoided by setting the idle timeout value higher (using the
-t active timeout value:idle timeout value option). However, changing
these settings in the CESNET2 monitoring setup is not feasible as it would
cause a disruption in monitoring operations. Therefore, a post-capture aggre-
gation of the data was done locally to reduce the degree to which the flows are
broken up. A timeframe of 5 minutes was chosen, same as the ipfixprobe de-
fault for active timeout (i.e., the longest possible duration before exporting).
The 5 minute value is established in ipfixprobe as a reasonable compromise
between measuring accuracy and latency.

For illustration, TeamViewer was left running idle and its traffic had been
captured via Wireshark. The resulting PCAPNG file was processed by ip-
fixprobe, first using the default idle timeout value of 30 seconds, then using
an increased timeout value of 5 minutes. In table 2.1, this is shown using
five separate flows. All of these flows shared the same addressing information
(destination and source IP-address:port pairs and protocol). The first four
flows are taken from the 30-second idle timeout export, the fifth one is their
aggregation in the 5-minute export.

It can be seen that during the first flow, another activity had taken place as
the last packet was seen roughly 39 seconds after the first one. In the following
three flows, however, each time roughly 5 seconds would elapse between the
first packet and the last packet being observed. Following that, it would take
further 50 seconds for the next flow to begin.

Table 2.1: Four separate flows aggregated into one

Time first Time last
15:10:35.351 15:11:14.412
15:12:04.382 15:12:09.475
15:12:59.408 15:13:04.511
15:13:54.442 15:13:59.544
15:10:35.351 15:13:59.544

2.1.4 Flow filtering and labeling

Before proceeding further, the obtained flow captures are filtered to create a
more representative set of the intended flows. The backbone flow captures
are first aggregated, then filtered to only include flows with a basic mini-
mum number of packets sent in either direction and at least a basic minimum
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duration (8 packets and 1 second of duration, specifically). This is done to
reduce the effects of an uncontrollable capture and of the limitations of the
capture environment so as to produce a set of flows more representative of
both TeamViewer’s traffic and of other traffic likely to be found alongside
TeamViewer.

Another issue addressed by further filtering of the captured flows is con-
cerned with the directionality of TeamViewer traffic. The direction of a biflow
(i.e., which side is considered the source of the biflow) is based on the first
packet observed in that biflow. As the observed flows could not be controlled,
some of the TeamViewer flows would be recorded as going in the opposite
direction. So as to maintain the directionality of flows (client-initiated con-
nections towards the server), TeamViewer flows found to be headed in the
opposite direction were filtered out.

After the aggregation and filtering are done, the flows are labeled. Two ba-
sic methods for recognizing TeamViewer flows had been established: searching
for the magic numbers 0x1130 and 0x1724 (discussed in greater detail in sec-
tion 1.3.1) in the TeamViewer protocol data unit, and by seeking a developer-
defined naming pattern in the PTR record of a given destination IP address
(discussed in section 1.2.4), respectively. As the IP addresses are anonymized
in the case of the backbone data, only magic numbers are used to distin-
guish between TeamViewer (”TV”) and other (”OT”) traffic. For TCP, an
attempt is first made to remove initial zero padding, then the first two bytes
are checked. If a magic number is found in one of the directional IDPContent
values, the flow is labeled as TeamViewer. Traffic which had been labeled as
non-TeamViewer had been retained as a source of other (”OT”) traffic for the
datasets.

Absent magic numbers

During exploration of captured backbone data, it was found that rarely, a TCP
flow would contain a magic number in one directional IDPContent feature and
a different value in the other. In some cases, the absence of a magic number
could be explained by a padding so long the magic number would be, entirely
or in part, pushed past the first 100 bytes. Because the IDPContent plugin
cannot be easily reconfigured to obtain more bytes in the CESNET2 capture
environment, should two such packets ever be the first directional packets to
be observed in a flow, the flow will be mislabeled.

A subset of these flows did contain actual values different from known
magic numbers. Further examination of locally captured traffic in Wireshark
had eventually revealed packets belonging to known TeamViewer connections
in which TeamViewer payloads would not contain a magic number. However,
no shared values could be found.

This was examined closer using the backbone data captures eventually
used to create the training dataset. Two captures had been conducted, one on
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Table 2.2: Labeling TCP captures using magic numbers

Total Bidir Unidir
1 payload

Unidir
2 payloads

No magic,
has payload(s)

No magic,
no payloads

5938 5,603,258 3,868,053 1,030,174 176 6,663 698,192
443 & 80 3,481,268 1,338,877 351,829 1,203 214,597 1,574,762

Sum 9,084,526 5,206,930 1,382,003 1,379 221,260 2,272,954
Sum/Total 1 0.57316 0.15212 0.00015 0.02435 0.25020

port 5938, one on ports 443 and 80 (see section 2.1.1 for more detail). Across
these two captures, a little over 9 million flows had been captured. Among
those, 1379 flows had been found that had contained a magic number in one
of their IDPContent values and something else in the other (this still includes
cases of the aforementioned extensive padding).

In table 2.2, the captured flows are classified based on observed magic
number content. Magic numbers could be found in both directions (Bidir), in
one direction (Unidir) or in neither direction (No magic). For unidirectional
flows, a distinction is made between flows in which only one payload had been
provided by IDPContent, and those where payloads in both direction had
been available. Similarly, for flows where no magic was found, a distinction
is made between flows where at least one payload had been available, and
those where no payload was available. Given the minimal representation of
potentially problematic flows in the data, the decision had been made not to
explore them further in the course of this thesis.

2.1.5 Blending with other known captures

Finally, the flows obtained from the backbone data (both TeamViewer and
other) had been blended with other flow data to further expand the variety of
traffic. The added flow data was obtained from various other available datasets
which had been captured under the same conditions and contain known flows
of certain protocols. The only exception is the PSTATS plugin configuration –
in some captures, the plugin had considered the default 30 packets, in others,
different values were used. Therefore, only the first 30 values in each PSTATS
generated list (lengths, directions, times and TCP flags) were kept for all
data. Otherwise, the flows had been processed in the same manner as in
the TeamViewer captures and contain the same information except for the
IDPContent values. This is not an issue as those are only used for labeling
the flows, which in this case can be done simply based on the origin of the
flows. To better challenge the classifier, certain datasets had been sampled for
their potential similarity while others were sampled to broaden the variety of
contained traffic. The following types of traffic had been added to the dataset:

TLS TLS is similar in the sense that it carries encrypted traffic containing a
variety of content, including activities similar to TeamViewer’s. This in-
cludes video streams (from streaming services such as Twitch or Netflix)
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and file-transfer traffic (e.g., FileSender, OneDrive). Datasets known to
contain this specific traffic had been sampled.

HTTP(S) As TeamViewer uses ports 443 and 80, HTTPS and HTTP traffic
had also been sampled to include more traffic likely to be encountered
alongside TeamViewer in real networks.

Other Samples of other protocols (IMAP, POP3, SIP, SMTP, SSH) had been
included to broaden the variety of traffic.

TLS traffic had been sampled from data used in writing [39], SSH traffic
from both [40] and [41] and HTTP, HTTPS and other traffic from [41]. Dif-
ferent capture files were sampled for the two datasets. Where only one file
was available, it was split before sampling so as to prevent the same flow from
entering both datasets. The DataFrame.sample(numberOfSamples) Pandas
method was used for the sampling. The method allows the user to specify
whether or not a row can be sampled more than once. This was disallowed.

2.1.6 Full feature set

At this stage, a basic set of flow features had been generated by ipfixprobe and
the plugins, and flow duration had been calculated to aid in filtering. However,
while some of these features are retained in the full feature set, others are ei-
ther not used at all (source and destination MAC addresses, link bit field
and dir bit field), or are used only for deriving further features by utiliz-
ing elements of the FET library. Both unused and intermediary features are
then removed before the final feature set is finished. Notable intermediary or
auxiliary features include:

Source and destination IP address Irrelevant in backbone data (as ad-
dresses are anonymized), but used to help identify TeamViewer flows in
the activity data capture.

Time first, time last The timestamps of the first and the last packet. Used
to calculate flow duration.

PSTATS-generated features These are related to the first 30 packets seen
in the biflow and include payload lengths, timestamps, directions and
contained TCP flags. Each of these is kept as a list of values generated
in the order of packet arrival. These are used to derive more specific
features later in the processing. If the flow is not using TCP, the TCP
flag values will default to 0.

IDPContent and IDPContent reverse The first 100 bytes of the TCP
or UDP payload. Taken from the first packet in the forward (source-
to-destination) and reverse (destination-to-source direction) direction.
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Used for labeling the flows based on the presence of a TeamViewer magic
number in the payload.

Once the flow content of the datasets was finalized, further features were
generated and added to the dataset using the FET library. The previously
calculated flow duration was used to derive relative packet and byte rates
based on known ipfixprobe counts of packets and bytes sent. This includes
forward, reverse and total rates. Duration is kept as a standalone feature in the
dataset. Ultimately, after all unused and intermediary features are removed,
the full feature set consisting of a total of 57 features kept (58 including the
label) is finalized.

Table 2.3: Full feature set
Feature category Specific features

Connection-related src port, dst port,
tcp flags, tcp flags rev

Flow-related, absolute packets, packets rev, bytes,
bytes rev, duration

Flow-related,
relative to flow duration

bytes rate, bytes rev rate,
bytes total rate, packets rate,

packets rev rate, packets total rate
TCP-flag counts
(first 30 packets)

fin count, syn count, rst count,
psh count, ack count, urg count

TCP-flag ratios
(first 30 packets)

fin ratio, syn ratio, rst ratio,
psh ratio, ack ratio, urg ratio

Packet-size statistics
(total, forward, reverse)

lengths min, lengths max, lengths mean, lengths std,
fwd lengths min, fwd lengths max, fwd lengths mean,
fwd lengths std, bwd lengths min, bwd lengths max,

bwd lengths mean, bwd lengths std

Inter-arrival time statistics (IAT)
(total, forward, reverse)

pkt iat min, pkt iat max, pkt iat mean, pkt iat std,
fwd pkt iat min, fwd pkt iat max, fwd pkt iat mean,
fwd pkt iat std, bwd pkt iat min, bwd pkt iat max,

bwd pkt iat mean, bwd pkt iat std

Normalized IAT statistics
(total, forward, reverse)

norm fwd pkt iat mean, norm fwd pkt iat std,
norm bwd pkt iat mean, norm bwd pkt iat std,

norm pkt iat mean, norm pkt iat std
Labeling label

Connection-related Source and destination port numbers allow the direc-
tion of flows to be identified in backbone data and are used for pre-
liminary filtering of activity data as non-TeamViewer flows are dropped.
Port-based features are further discussed in section 2.1.6. The tcp flags
and tcp flags rev features contain aggregates of TCP flags observed
in the course of a flow. As the presence of a flag is represented by a
bit value in a specific position, the aggregation can be achieved using a
bitwise OR.
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Flow-related Byte and packet related features are used both as-is and for
calculating their respective rates relative to flow duration. The duration
of the flow is calculated as the time elapsed between the first and the
last packet observed. Duration is used for three different purposes: to
aid in basic flow filtering, to derive features relative to time and as a
standalone feature.

TCP flag counts and ratios Not to be confused with the actual tcp flags
features, rather than aggregate all flags observed, these features count
the number of occurences of individual flags. The following flags are
tracked: ACK, FIN, RST, PSH, SYN and URG. The PSTATS plugin
generates a list of TCP flag values contained in the first (by default)
30 packets of the biflow. FET then adds the counts of each flag and
the ratio of a specific flag found to total number of observed packets as
features.

Packet-size statistics The minimum, maximum, mean and the standard de-
viation of payload lengths are calculated based on the PSTATS-generated
list of packet payload lengths. Both these and the following inter-arrival
features are calculated both in separate flow directions (forward/reverse)
and as a total.

Inter-arrival time statistics (IAT) The minimum, maximum, mean and
the standard deviation of packet inter-arrival times (i.e., times elapsed
between packet arrivals) are based on the PSTATS list of packet arrival
timestamps. Also included are the mean and standard deviation values
of normalized inter-arrival times. The normalization is done as a binary
choice where times shorter than a given length are evaluated as 0 and
longer ones as 1. The default breakpoint is 5 seconds.

Labeling The label is generated using the methods discussed in 2.1.4.

Port-based features

An inherent characteristic of TeamViewer traffic should be discussed in this
context, specifically the issue of used port numbers. As mentioned in sec-
tion 1.2.4, TeamViewer uses destination TCP ports 5938, 443 and 80 for com-
munication with its servers. While non-TeamViewer flows destined for ports
443 and 80 are easy to capture as these ports are used for HTTP and HTTPS
traffic, non-TeamViewer traffic headed for port 5938 is considerably more dif-
ficult to find. This leads to a heavy imbalance in the dataset – TeamViewer
traffic is largely destined for port 5938, whereas the majority of the other traf-
fic is not. For example, in the training set, roughly 85,000 of TeamViewer flows
(about 74.7 % of the total) have a destination port number 5938. Only 845
non-TeamViewer flows share the same destination port number, a negligible
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amount. Port numbers are therefore a potent tool for identifying TeamViewer
traffic but may possibly diminish the impact of other features.

2.1.7 The final outcome

Overall, two datasets have been created – a training and a testing one. The
datasets were saved and manipulated in the form of Pandas DataFrames using
the Python module Pickle [42]. Pickle is used for object (de)serialization,
allowing a Python object (such as a Pandas DataFrame) to be saved to and
loaded from a file. To that end, the *.pickle file format is used. However,
their final form is saved in the CSV format so as to provide a generic, easily
accessible format.

The creation of both the datasets follows the same process outlined in this
chapter. Two pairs of network captures, separated by over a week of time, had
been conducted to gather the initial data (section 2.1.1). Each pair was then
merged into one, had its flows aggregated (section 2.1.3) and was filtered and
labeled (section 2.1.4). Both pairs had then also been expanded with other
relevant traffic (section 2.1.5), however, a different ratio of TeamViewer traffic
to other traffic had been chosen.

The training set was made to contain roughly the same amount of Team-
Viewer and other traffic to allow the models to learn using a larger amount
and variety of required flows. The testing set, on the other hand, aimed to use
a ratio that would somewhat better reflect the amount of TeamViewer flows in
captured traffic. To this end, the ratio of traffic in this set is roughly 1 to 10
(TeamViewer to other traffic). This means that in the training set, 113,602
TeamViewer and 109,781 non-TeamViewer flows are contained. In the testing
set, a total of 9,745 TeamViewer and 93,603 other flows are contained.

Table 2.4: Class distribution in binary classification datasets

Training dataset Testing dataset
TeamViewer flows 113,602 9,745

Other flows 109,781 93,603

2.2 Local traffic

As the available network traffic data is difficult to obtain in large amount by
hand, only one smaller dataset had been assembled for the activity classifica-
tion experiment as a proof-of-concept for a broader investigation. The activity
data was captured in the Wireshark application (ran on one of the communi-
cating devices), saved as a PCAPNG file and then passed to ipfixprobe. The
central device on which captures had been conducted was a Windows desktop,
communicating with a Linux Mint laptop (for remote control and file transfer),
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a virtual Windows machine (for one-sided audio traffic) and another desktop
computer on the Internet (when capturing two-sided audio traffic). The Use
UDP option, discussed in section 1.2.3, had been turned on during the cap-
tures. This was done because the conferencing feature uses UDP regardless
of the setting. With the setting on, the other classes also use UDP in their
traffic. Finally, the PSTATS plugin had been set to use the default number
of packets, which is 30.

A set of captures had been conducted for each of the classes. Between
90 to 100 captures had been conducted for each class, leading to roughly the
same number of flows per class remaining after processing and filtering (about
250, including TCP and UDP flows).

Table 2.5: Class distribution in activity classification datasets

CO FT RC
TCP flows 171 156 134
UDP flows 70 115 97

Some of the activity was chosen because of possible similarity to other
classes, so as to better test the machine learning models. For example, the
screen sharing aspect of conferencing potentially being somewhat similar to
the desktop-sharing during a remote control session, or unidirectional audio
traffic being more similar to a file transfer than a call in which both sides talk.
The specifics of the captures are as follows:

Conferencing The conferencing class contains traffic in which screen sharing
and audio calls were conducted, both separately and at the same time.
The traffic had been captured on a device connecting to a meeting hosted
by another device. The audio calls could be bidirectional (i.e., both
sides speak at some point) or unidirectional (only one side talks during
the call). Only unidirectional calls were combined with screen-sharing.
For unidirectional activity (screen-sharing or one-sided audio calls), the
directionality of traffic (i.e., which side of the communication speaks
or shares the screen) had been varied. Both conferencing and remote
transfer captures would last roughly between 30 seconds to 3 minutes.

Remote control Traffic was captured both when connecting to a remote
device and when being connected to by a remote device. To further vary
the traffic, different activity had taken place in these remote sessions,
ranging from more intensive (playing video or aggressively moving a
window across the screen) to less intensive (typing or motioning with
the cursor) to simple inactivity.

File transfer Transfers of files (both sending and receiving) had been cap-
tured, using mostly file sizes between 3–5 MB, although in a smaller
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subset of captures, a 50 MB file had been sent. A variety of formats
have been used, including a ZIP archive, a BMP image or a simple TXT
file. In most captures, a single file had been sent, but in a smaller set
of captures, multiple files had been sent in a row with varying intervals
between them.

Because the conferencing feature was observed to use UDP even with the
Use UDP option off and because the option is on by default, the decision had
been made to turn the option on so as to allow file transfer and remote control
to also use UDP.

2.2.1 Filtering and aggregation

As the flow exporter is run locally, it is possible to increase the idle time-
out value and consequently remove the need for post-capture flow aggrega-
tion. As for filtering, activity data is approached somewhat differently as
only TeamViewer traffic is to be kept. Therefore, the traffic is first filtered to
remove non-TeamViewer traffic. This is done using the protocol value (only
TCP(6) and UDP(17) are kept) and the destination port value (for TCP flows
only). After the dataset had been narrowed down to flows which can contain
TeamViewer traffic, the IP addresses are examined to determine which ones
belong to TeamViewer servers (see section 1.2.4). This information, coupled
with the magic numbers contained in the IDPContent features, is then used
to both label and consequently filter the traffic to only contain TeamViewer
flows.

Flows in which only one or two packets had been sent were then filtered
out as they do not carry the conducted activity and would only confuse the
classifiers. Most of these flows share a common set of characteristics, includ-
ing having a destination IP address of a TeamViewer server, the destination
port number 5938 and a source port number over 40000. A difference can be
observed between such flows based on the activity being conducted. Whereas
during conferencing captures, these flows only ever carry a single payload of
a specific length to the server, during file transfer and remote control cap-
tures, the server and client can exchange one or two packets and at least two
different payload lengths can be observed. The purpose of this traffic is un-
known, although in the case of remote control and file transfer it may be the
establishment of direct UDP communication as described in section 1.2.3.

A subset of these flows differ in that they can observed travelling between
the local private and public IP addresses, using exclusively both destination
and source port numbers over 30000. This is likely a part of the aforementioned
direct UDP communication set up, with the capture of such flows being a
result of capturing the network traffic on the same device that is being used
to generate it. Regardless, these are also filtered out.
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2.2.2 Labeling

Flow labeling had been taken into consideration when choosing the approach
to capturing activity data and thus only a single activity was conducted in
any given capture. Afterwards, the captures had been grouped by activity and
filtered down to only contain TeamViewer flows identified by magic numbers or
known TeamViewer IP address (only magic numbers could be used for direct
UDP communication). UDP traffic differs from TCP in terms of identification
in that the magic numbers are not placed at the beginning of the data, but
rather in the 12th and 13th bytes. Once the binary classification is used to
remove non-TeamViewer flows, each group of flows had been labeled based on
the known activity conducted during its capture as Conference (”CO”), File
Transfer (”FT”) or Remote Control (”RC”).

2.2.3 Activity features

As the activity dataset contains both TCP and UDP traffic, the original full
feature set is used and expanded to include the transport protocol used. As
UDP is added, it is also worth discussing the port numbers used in the activity
dataset. As only TeamViewer traffic is included, the TCP destination port is
not quite as influential as it was in binary classification (see 2.1.6). However,
a similar issue arises with UDP port numbers.

Conferencing still uses a TeamViewer server as a proxy, communicating
with it on UDP port 5938. The other two use cases, however, use their TCP
connections to a server to negotiate direct UDP communication to each other.
This direct communication does not use port 5938, instead it has been ob-
served to use a wide variety of port numbers, ranging roughly between 30000–
65535 (for both source and destination port number). The port number dis-
parity distinguishes the conferencing UDP traffic from the others.
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Chapter 3
Experiment realisation

Both kinds of experiments to be conducted seek to classify captured net-
work flows. In the first, the classification is binary – either a flow contains
TeamViewer traffic or it does not. In the second one, the provided dataset is
known to contain TeamViewer traffic and a classification of the content of the
traffic is the goal. The content can belong to one of three classes: conferenc-
ing, file transfer or remote control. In either case, a set of machine learning
models are trained to perform the aforementioned classification using the pre-
pared datasets. The tasks performed in this chapter have used the scikit-learn
implementations of various machine learning models and associated functions.

3.1 Machine learning classifiers

Having prepared suitable datasets with a broad feature set to work with, ma-
chine learning classifiers were used to classify the traffic. The learning process
of a model can either be supervised (i.e., the provided datasets are labeled) or
not. For this thesis, the datasets had been labeled and as such, the learning
was supervised. A selection of machine learning classifiers had been chosen
for the task, consisting of a decision tree, a K-Nearest-Neighbors classifier
and three ensemble approaches: RandomForest, AdaBoost and Gradient Tree
Boosting.

The decision tree machine-learning method derives a set of rules from
provided data features. Based on these rules, a branching set of questions
is asked about the data, at the end of which the specified subset of data
can be classified a certain way. While it remains a popular choice, especially
because its methodology (i.e., asking a set of questions to reach a conclusion)
is easy to understand and visualize, it may be susceptible to certain issues.
Examples discussed in [43] include difficulty in generalising data (overfitting
on the training data) or possible instability, where small variations in data
lead to large differences in the generated trees. These issues can be addressed
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by adjusting the characteristics of the tree (e.g., maximum depth) or by using
an ensemble approach to refine the outcome.

K-Nearest-Neighbors takes a different approach to classification in the
sense that it does not create a model based on the input training data and
instead stores it. When prompted to classify a sample, it then finds the
most-alike known samples in the training data and reads their labels. The
classification is then a matter of simple majority vote between the found la-
bels.

The ensemble approaches are specific in that they utilize multiple sim-
pler models, deriving the ultimate outcome from the results of the constituent
models. The random forest approach employs multiple decision trees which
are trained on different samples of the provided training data. The outcomes
of the decision trees are then averaged. AdaBoost, while by default also using
decision trees, takes a different approach. Instead of averaging the outcomes
of the individual trees, it produces intermediary results, based on which new
classification attempts are made, this time with adjusted weighting of mis-
classified elements. This way, difficult-to-classify problems are given more
prominence. GradientBoosting is similar to AdaBoost, but rather then rely-
ing on weight adjustments in its learning, it attempts to minimize the results
of a loss function used to quantify the error between the expected and the
predicted values.

Table 3.1: Hyperparameters used for machine-learning classifiers

Classifier Hyperparameters used

DecisionTree
random state = 42,
max depth = 30,

min sample split = 2

RandomForest

random state = 42,
n estimators = 100,
max depth = None,
min sample split = 2

K-Neighbors n neighbors = 5,
leaf size = 30

AdaBoost

estimator = DecisionTreeClassifier(
random state=42, max depth=30),

n estimators = 50,
learning rate = 1

GradientBoosting
random state = 42,
n estimators = 100,

learning rate = 1

Table 3.1 shows the classifier input parameters (they can also be referred
to as hyperparameters) used during the experimental portion of this thesis. If
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a hyperparemeter is not mentioned, the default value provided by its scikit-
learn implementation was used. Decision trees have had their maximum depth
reduced as a basic precaution to help reduce the risk of overfitting. Where
applicable, a specific random state value is supplied to ensure deterministic
behavior.

3.2 Further feature vector exploration

The relative importances of features in classification can be observed by visu-
alizing the importance values assigned to them by a capable machine learning
classifier. In this case, the FET library function plot feature importances,
based on the ExtraTreesClassifier, was used. Furthermore, the baseline fea-
ture vector can be reduced to explore the effect of various features on the
classification process or to set up further experiments based around specific
feature subsets.

A total of 57 features (58 including labels) was established in the binary
datasets, with the activity dataset also containing the transport protocol used
as a feature. In both cases, port numbers are included in the baseline feature
vector. Two possible reductions of the feature vector have emerged in the
course of writing this thesis: the removal of port-number features, and the
removal of absolute-value features (e.g., overall packets sent) akin to that
done in [30]. On one hand, the removal of absolute-value features removes the
influence of unpredictable aspects of traffic from the data (e.g., the size of the
file sent, or the length of a conference). On the other hand, relative features,
such as the rate of packets sent over a unit of time, can be heavily influenced
by the capture environment performance. As such, this approach is better
suited to controlled capture environments as opposed to public networks.

Further, the feature vector can be reduced using the scikit-learn function
RFECV [44] (Recursive Feature Elimination and Cross Validation). The func-
tion is given a set of data, an estimator and possible further optional param-
eters. The goal of the function is to recursively prune features based on their
importances (those are calculated by the estimator trained on provided data).
A minimum number of features may be specified, but a higher-than-minimum
number may ultimately be kept, as the function runs a cross-validation loop
and chooses the best-scoring outcome. For this thesis, scoring was based on
the accuracy of the outcome (see section 4.1).

3.3 Training and testing the models

To prepare the training data for the actual classifier training, it is first normal-
ized, i.e., the values are transformed in such a way as to fit within a specific
number range while still retaining the differences between individual sam-
ples. In the course of the conducted experiments, a scikit-learn-implemented
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MinMaxScaler had been employed to normalize the feature values to fit within
the range between 0 and 1. This is especially important for the k-Nearest-
Neighbors classifier as it removes the difference in scale between various fea-
tures while retaining the relative differences between individual values of a
feature. This helps to prevent the scale of feature values from influencing the
neighbor-distance calculations. After the data is prepared as described, the
classifiers can be trained and used to predict testing data labels.

This process is streamlined using the scikit-learn Pipeline class. An in-
stance of this class allows the user to create a convenient wrapper around a
sequence of steps that would normally be taken in the course of data prepro-
cessing and the learning of a model. In this case, the pipeline is initialized with
a scaler (for data normalization) and the classifier in question. The method
pipeline.fit(trainingData, trainingLabels) is then called, which com-
bines the fitting of the scaler, the consequent transformation of the data and
the fitting (or learning) of the classifier. The pipeline then retains the fit-
ted scaler and classifier, allowing the method pipeline.predict(testData)
to transform the data using the scaler before passing it to the classifier for
classification.
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Chapter 4
Evaluation

4.1 Performance metrics

In the case of simple binary classification, four different outcomes can be
found: true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). Assuming two classes - 1) belongs to TeamViewer, and 2) does
not belong to TeamViewer - we refer to the first one as the positive class and
the second one as the negative class. A true positive is a sample correctly
classified as belonging to TeamViewer, a false positive is a sample incorrectly
classified as belonging to TeamViewer etc. When the classification contains
more than two labels, it is treated as a set of such binary problems [45], one
for each class (the other classes collectively play the role of the negative class).
The results of each individual problem are then averaged to reach the final
metric. In this chapter, the average is calculated as a mean of the contributing
values and not weighted in any way.

The classification results can either be viewed as a matrix (called a confu-
sion matrix) including all of the above or a single value quantifying a certain
quality of the classification can be calculated to score the performance. The
methods of scoring used here are accuracy, precision, recall and the F1 score as
implemented in scikit-learn. The F1 score can also be referred to as balanced
F-score, as it balances the contributions made by precision and recall.

Accuracy is concered with the number of all correct predictions relative to
the total number of predictions: Accuracy = T P +T N

T P +T N+F P +F N .

Precision evaluates how likely it is for a positive prediction to be correct,
with lesser precision rating meaning more false positive predictions:
Precision = T P

T P +F P .
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Recall seeks to quantify how likely it is for a positive sample to be correctly
predicted: Recall = T P

T P +F N .

F1 score is a metric combining precision and recall as equally important:
F 1 = 2 ∗ precision∗recall

precision+recall .

Table 4.1 shows an example of a confusion matrix. Confusion matrices
going forward will be formatted so that each row contains the overall number
of true samples of a given class, whereas the column contains the overall
number of samples predicted to be of that class. The matrix can be further
expanded to include metrics (e.g., recall) calculated separately for each class.

Table 4.1: Confusion matrix example

Predicted TeamViewer Predicted Other
True TeamViewer TP FN

True Other FP TN

4.2 Binary classification

The models would first be trained on the prepared training dataset with equal
proportions of TeamViewer and other traffic, then used to predict the labels of
the testing set. The goal in this phase was to both evaluate the performance
of the classifiers on the data as-is, and to experiment with feature vector
reduction, namely by removing port-number features and utilizing the RFECV
function to attempt to find a well-performing subset of the feature vector.

First, before any feature vector manipulation, the baseline feature vector
had been explored. Using the FET function plot feature importances, an
evaluation of the features was visualized. This evaluation was generated by
an ExtraTreesClassifier trained on the prepared training set. Figure 4.1 shows
the 15 most important features from the evaluation. While the destination
port ranks reasonably high as a feature, its importance is comparable to others
and in some cases it is overshadowed by them. Specifically, statistical features
based on the ACK and PSH flag counts, and those based on packet lengths
do very well.

Two separate experiments had been conducted to explore the impact port-
based features have on classification – the first using the baseline feature vector
and the second removing the destination and source port features. The dif-
ference between the two was found to be minimal with the exception of a
minor increase in false positive predictions in the AdaBoost and DecisionTree
classifier results. As such, only the results of the second experiment are shown
in figure 4.2, accompanied by the original AdaBoost results from before the
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Figure 4.1: Backbone training dataset - most important features

removal for comparison. The performance is roughly even across the board,
with the DecisionTree and AdaBoost classifiers suffering a decrease in preci-
sion. The best performers overall are the RandomForest and GradientBoosting
classifiers.

Table 4.2: Results after port numbers have been removed

Classifier Accuracy Precision Recall F1 score
AdaBoost (before) 0.99639 0.96386 0.99917 0.98960
AdaBoost (after) 0.99064 0.91080 0.99856 0.97373
DecisionTree 0.99090 0.91287 0.99887 0.97444
GradientBoosting 0.99827 0.98391 0.99805 0.99499
K-Neighbors 0.99652 0.96650 0.99774 0.98997
RandomForest 0.99939 0.99428 0.99928 0.99821

Given the performance of other features, port-number based features had
been removed from the feature vector for the rest of the binary classification
experiments. This was done to see how well the classifiers manage to predict
the results relying more on varied statistical properties of captured traffic as
opposed to static features such as port numbers. However, port-number based
features are kept in the original feature vector of the datasets because they
remain a relevant aspect of the traffic flows and can be used to differentiate
TeamViewer flows from others.

While the differences between the various classifiers are quite slim, the
best performance based on the F1 score was achieved by the RandomForest
classifier (0.998). It was therefore selected as the classifier for further evalu-
ation, specifically for an attempted reduction of the feature vector using the
RFECV function. At this point, the feature vector had contained a grand
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total of 55 features after the removal of destination and source port. The
RFECV function had reduced this number down to 34. The most important
15 according to the RandomForest classifier used are shown in figure 4.2.

Figure 4.2: Feature importances of RandomForest after RFECV

Similar to the initial importance evaluation, features related to payload-
length statistics and TCP-flag counts remain highly influential. Payload-
length statistics help distinguish flows based on their beginnings using the
lengths of the TCP/UDP payloads of the first 30 observed packets. Looking
at the data in the training set, TeamViewer flows very commonly maintain a
low maximum payload length (24 B) in these first 30 packets, while occasion-
ally reaching as high as 1460 B.

On the other hand, other traffic is more likely to have a higher maximum
payload length. A wide variety of lengths can be seen, the most common being
1460 B (likely the effect of the included TLS sample). This may point to a
longer initial communication setup when using a TeamViewer server proxy in
which shorter payloads are used.

Table 4.3: RandomForest results after RFECV reduction
TV OT

TV 9,738 7
OT 48 93,555
CP 0.99510 0.99993
CR 0.99928 0.99949

The ACK (acknowledgement) and PSH (push) TCP flags are used less in
the observed initial packet payloads of TeamViewer traffic – ACK is shown to
have a mean of roughly 4.4 occurences while PSH of 4.3. In other traffic, ACK
and PSH display means of roughly 20.9 and 15.5, respectively. Table 4.3 shows
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the final results of the RandomForest classifier trained using this reduced
feature set.

4.3 Activity classification

In the case of activity classification where only one set is available, the scikit-
learn train test split function is used to create a training and testing subset
(using a 60 % training to 40 % testing split). In order to retain the original rel-
ative representation of labels in these subsets, the function offers the stratify
parameter. When supplied the training data labels, the function will stratify
its sampling so as to maintain the original ratio of different labels. Exper-
iments with feature selection in activity classification include three separate
ideas – removing port-number features, removing absolute-value features from
the feature vector (akin to [30]) and finally, utilizing the RFECV function to
attempt to reduce the feature vector for the classifier found to be performing
the best. Before discussing the results of the experiments, it has to be said
that the experiments conducted in this section had used a limited size dataset
that may not be fully representative of the traffic discussed. Consequently,
the results presented are a proof-of-concept for classification of TeamViewer
activities rather than a final solution.

Figure 4.3: Activity dataset - most important features

Looking at the feature importances of the vector as-is (figure 4.3), the most
influential feature is flow duration. While captured conferencing calls and
remote control sessions were conducted in similar length, file transfer sessions,
although varied, generally lasted a shorter time. It cannot be determined
at the time of writing if such a difference also occurs in live traffic captured
in a public network. Regardless, it merits exploring how well the traffic can

39



4. Evaluation

be classified with absolute values such as duration removed from the feature
vector (the approach of [30]).

Similarly to the binary classification experiments, the destination port
number in the activity dataset is one of the most important features, but
not overwhelmingly so. However, for the activity dataset, the source port
number also ranks highly. The difference between TCP and UDP flows may
help explain why – UDP flows uniformly use source port numbers over 30000,
whereas TCP flows use numbers from a range roughly between 1300 and 5000.
First, the influence of port-based features on the classification was investigated
(originally discussed in section 2.2.3). The removal of port-based features does
lead to a modest increase in remote control (RC) misclassifications. However,
the overall results are not considerably worse, suggesting the feature vector is
robust enough to perform well without having to rely on these features.

Table 4.4: DecisionTreeClassifier results - before (left) and after (right) port-
features removal

CO FT RC
CO 92 2 3
FT 1 92 16
RC 5 13 74
CP 0.93878 0.85981 0.79570
CR 0.94845 0.84404 0.80435

CO FT RC
CO 94 2 1
FT 3 94 12
RC 8 17 67
CP 0.89524 0.83186 0.83750
CR 0.96907 0.86239 0.72826

The difference is shown in table 4.4 using two confusion matrices on the
example of the most affected classifier – DecisionTree. Appended below the
matrix are class-specific values for precision (CP) and recall (CR), correspond-
ing to the class represented in the given column. In the core of the matrix,
the three designated classes are represented: conferencing (CO), file transfer
(FT) and remote control (RC).

Table 4.5: Overall results after removing port-based features

Classifier Accuracy Precision Recall F1 score
AdaBoost 0.89933 0.89903 0.89789 0.89801
DecisionTree 0.85570 0.85487 0.85324 0.85220
GradientBoosting 0.89597 0.89680 0.89634 0.89656
K-Neighbors 0.79530 0.79327 0.79405 0.79126
RandomForest 0.90604 0.90561 0.90552 0.90534

Looking at the overall results of the classifiers (shown in figure 4.5), the
RandomForest classifier had performed the best, with AdaBoost and Gradi-
entBoosting classifiers performing nearly as well with a marginally lower F1
score (0.905 versus 0.898 and 896, respectively). The DecisionTree classifier
was more impacted by the loss of port-based features but still performed rea-
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sonably well, reaching an F1 score of 0.852. Finally, the K-Neighbors classifier
performed the worst with an F1 score of 0.791.

Given these results, the RandomForest classifier had been chosen for fur-
ther evaluation. The RFECV function discussed in section 3.2 has been used
to reduce the feature vector and observe the effect on the classifier. The

Table 4.6: RandomForest results before (left) and after feature vector reduc-
tion

CO FT RC
CO 96 1 0
FT 1 97 11
RC 3 12 77
CP 0.96000 0.88182 0.87500
CR 0.98969 0.88991 0.83696

CO FT RC
CO 95 1 1
FT 1 94 14
RC 2 12 78
CP 0.96939 0.87850 0.83871
CR 0.97938 0.86239 0.84783

outcome was that 8 features would be removed. This included the counts
and ratios of the FIN, RST and URG flags (i.e., fin count, fin ratio and
so on) and the overall and forward normalized IAT standard deviation (i.e.,
norm pkt iat std and norm fwd pkt iat std). The pruning of these features
caused no major change to the produced results, as shown in table 4.6.

Lastly, given the somewhat arbitrary nature of the locally captured flows,
an attempt was made to evaluate the performance of classifiers trained on a
feature set from which absolute-value features had been removed (akin to [30]).
This way, the classification is not influenced by the arbitrary choices of session
length or file size.

Table 4.7: Overall results after removal of ports and absolute-value features

Classifier Accuracy Precision Recall F1 score
AdaBoost 0.81879 0.81868 0.81791 0.81818
DecisionTree 0.78523 0.78550 0.78355 0.78295
GradientBoosting 0.83893 0.84411 0.83512 0.83656
K-Neighbors 0.74497 0.73842 0.74686 0.74118
RandomForest 0.84899 0.85112 0.84637 0.84720

This removed features expressed the number of bytes or packets observed
in any direction and the flow duration (i.e., bytes, bytes rev, packets,
packets rev and duration). The counts of observed specific TCP flags
(e.g., psh count) were kept, as they relate to the payloads of the first 30
packets rather than the entire flow. This feature vector reduction influenced
the results more noticeably, but with the sole exception of the K-Neighbors
classifier, never reduced the F1 score of any classifier below the 0.75 mark.
The results are presented in table 4.7. As with previous experiments, the
best performing classifier had been RandomForest with an F1 score of 0.847.
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4. Evaluation

Table 4.8: RandomForest performance after absolute-value feature removal

CO FT RC
CO 95 1 1
FT 1 93 15
RC 2 25 65
CP 0.96939 0.78151 0.80247
CR 0.97938 0.85321 0.70652

The performance remains comparable with previous experiments with the
exception of an increase in remote control (RC) flows being misclassified as
file transfer (FT). This can be seen in the decrease of FT precision and RC
recall, shown in table 4.8.
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Conclusion

TeamViewer is one of the more prevalent and commonly used remote access
applications, allowing users to manage remote devices or to interact with col-
leagues and customers. Part of the appeal of the application is its ease of use,
making it a viable option for most users. However, this ease of use, coupled
with the level of access granted by the application, poses a severe threat to
security as the application can be exploited in various ways. These could be
social engineering (such as technical support scams) or the abuse of the appli-
cation by malware, allowing the attacker remote access to a victim’s system.
Consequently, the presence of TeamViewer traffic in a network infrastructure
can be an indicator of a security threat – either a company policy violation,
or a malicious attack. Therefore, the main motivation of this thesis was to
analyse the communication of TeamViewer on the network level (considering
packets and IP flows) so as to design and develop a detection algorithm.

This thesis had dealt with the traffic recognition of TeamViewer using ma-
chine learning models that were comprehensively evaluated in the designed
experiments. As no publicized datasets of TeamViewer traffic could be found,
one of the primary contributions of this thesis is the creation of datasets of
traffic samples for the training and testing of machine learning algorithms.
The chief goal of this effort was to invent a feasible detection algorithm to
reliably recognize TeamViewer connections among other traffic. Additionally,
the experiments continued on to distinguish between different contents of en-
crypted traffic, i.e., remote control, file transfer and conferencing. The results
of the experiments are promising, with the detection of TeamViewer traffic
reaching 99.9 % accuracy and distinguishing between activities reaching at
least 84.9 %. The best classification models that were found are based on
DecisionTrees/Random Forests and as such can be easily deployed to analyse
high-speed network traffic.
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Conclusion

Future work

Future work could include the expansion of the binary datasets, as they pri-
marily focused on TCP communication, with UDP traffic. The scope of the
activity dataset could be further expanded. Finally, the Wireshark dissector
could help further explore the workings of the application. Unfortunately, fur-
ther analysis and development of this tool were out of the scope of this thesis
and remain a topic for future work.
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Appendix A
Acronyms

ACK Acknowledgement

AES Advanced Encryption Standard

BMP Bitmap Image File

CESNET Czech Education and Scientific NETwork

CO Conferencing

CP Class precision

CR Class recall

CSV Comma-separated values

DLL Dynamic-link library

DNS Domain Name System

FET Feature Exploration Toolkit

FIN Finished

FT File transfer

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IAT Inter-arrival time

IDPContent Initial Data Packets Content

IMAP Internet Message Access Protocol

LAN Local Area Network
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A. Acronyms

NAT Network Address Translation

NEMEA Network Measurements Analysis

OT Other

PCAP Packet Capture

PCAPNG Packet Capture Next Generation

POP3 Post Office Protocol 3

PSH Push

PSTATS Packet Statistics

PTR Pointer

RAT Remote Access Trojan

RC Remote Control

RFC Request For Comments

RFECV Recursive Feature Elimination Cross Validation

RSA Rivest, Shamir, Adleman

RST Reset

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SPLT Sequence of Packet Lengths and Times

SYN Synchronisation

TCP Transmission Control Protocol

TID TeamViewer ID

TLS Transport Layer Security

TV TeamViewer

UDP User Datagram Protocol

URG Urgent

YAF Yet Another Flowmeter
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
datasets..................................... the directory of datasets
notebooks.......................... the directory of Jupyter notebooks

ipynb........................ the directory of the original notebooks
pdf...............................the directory of their pdf versions
shared.py.......................Python module of shared functions

BP-2021-Klatovsky-Tomas.pdf .......... the thesis text in PDF format
thesisSource.zip ................. the LATEX source codes of the thesis
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