
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Crypto-currency miner detection from extended IP flow data

Richard Plný

Ing. Karel Hynek

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2022/2023

Instructions

Study network monitoring and analysis technology based on Deep Packet Inspection and

(extended) IP flows. Analyze the area of cryptocurrencies, their mining approaches, and

their behavior on the computer networks focusing on the miner detection possibilities.

Design an algorithm for automatic detection of crypto-miners in the network based on

observed network traffic. Develop a software prototype capable of processing real high-

speed network traffic using the NEMEA system [1,2]. Test and evaluate the prototype with

the created dataset and data provided by the supervisor of this thesis.

[1] T. Cejka, V. Bartoš, M. Svepes, Z. Rosa, and H. Kubatova, “NEMEA: A Framework for

Network Traffic Analysis,” in 12th International Conference on Network and Service

Management (CNSM 2016), Montreal, Canada, 2016.

[2] https://github.com/CESNET/NEMEA

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 8 December 2021 in Prague.

Bachelor’s thesis

CRYPTO-CURRENCY
MINER DETECTION
FROM EXTENDED IP
FLOW DATA

Richard Plný

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Karel Hynek
May 2, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Richard Plný. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Plný Richard. Crypto-currency miner detection from extended IP flow data.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments ix

Declaration x

Abstract xi

List of abbreviations xii

Introduction 1

1 Theoretical Part 3
1.1 Cryptocurrency . 3

1.1.1 Mining and mining pools . 4
1.1.2 Mining protocols . 5
1.1.3 Abusive mining . 7
1.1.4 Previous attempts of mining detection . 8

1.2 Network monitoring . 9
1.2.1 Deep Packet Inspection . 10
1.2.2 IDS/IPS Systems . 11
1.2.3 Flow-based network monitoring . 12
1.2.4 NEMEA . 13

1.3 Machine Learning . 14
1.3.1 Selected supervised ML algorithms . 15

1.4 Dempster-Shafer theory . 15

2 Datasets 17
2.1 Current situation of cryptocurrencies . 17
2.2 Local examination of miners’ traffic . 18
2.3 Traffic capture on CESNET . 18
2.4 Creating datasets . 20
2.5 Summary . 21

3 Analysis and design 23
3.1 Analysis of traffic from CESNET . 23
3.2 Design . 25
3.3 ML classifier . 27
3.4 Stratum detector . 28
3.5 TLS SNI Classifier . 30
3.6 Meta classifier . 31
3.7 Implementation . 33

3.7.1 Miner aggregator . 34
3.7.2 IDEA reporter . 35

iii

iv Contents

4 Evaluation 37
4.1 Datasets’ quality . 37

4.1.1 Permutation tests . 37
4.2 Performance metrics . 38
4.3 Performance of the miner detector . 39
4.4 Deployment on CESNET . 41

Conclusion 43

A Selected mining pools 45

B Permutation test results 47

C ML models’ results 51

D Experimental credibility values 55

E User manual 57

Contents of enclosed CD 65

List of Figures

1.1 Blockchain P2P network . 4
1.2 Blockchain structure . 4
1.3 Comparison of solo and pooled mining . 5
1.4 Stratum requests sent between a miner and a mining pool 6
1.5 Event-based DPI . 11
1.6 Flow-based network monitoring architecture . 13
1.7 Network monitoring setup with NEMEA . 14
1.8 Internal architecture of NEMEA . 14
1.9 Selected ML models . 16

2.1 Scheme of the Python script for rule generation 19

3.1 Unencrypted flows in CESNET traffic . 23
3.2 Statistics of exchanged bytes . 24
3.3 Statistics of exchanged packets . 25
3.4 Packet characteristics . 25
3.5 Ratios of received and sent packets in flows . 26
3.6 Ratios of TCP PUSH flag in flows . 26
3.7 Overall flows duration . 27
3.8 High-level concept of the Meta classifier . 27
3.9 Initial design of the Stratum detector . 29
3.10 Design of TLS SNI classifier . 31
3.11 Schema of the Meta classifier . 32
3.12 Proposed deployment architecture of our miner detector 34
3.13 Screenshot of IDEA alert with a potential miner in the Mentat web interface . . 35

4.1 ROC AUC metrics . 39
4.2 Confusion matrices of miner detector (the Meta classifier) 40
4.3 Confusion matrices of support classifiers when all data were used 40
4.4 Confusion matrices of support classifiers when the pre-filter was in place 41

B.1 Performance drops of ML models used for permutation testing 49

v

List of Tables

2.1 Datasets overview . 20

3.1 Overview of flows’ metrics exported on CESNET network 24
3.2 Overview of selected features for ML models . 28
3.3 Hyperparameters of the best Random forest model 28

4.1 Performance of the chosen Random forest model 39

A.1 Selected mining pools for BTC . 45
A.2 Selected mining pools for ETH . 46
A.3 Selected mining pools for XMR . 46

B.1 P -values for dataset 01 from permutation tests with 200 permutations 47
B.2 P -values for dataset 02 from permutation tests with 200 permutations 48
B.3 P -values for dataset 03 from permutation tests with 200 permutations 48
B.4 P -values for dataset 04 from permutation tests with 200 permutations 48

C.1 Overview of Decision tree models . 51
C.2 Overview of Decision tree models’ performance 52
C.3 Overview of Random forest models . 52
C.4 Overview of Random forest models’ performance 53

D.1 Experimental credibility values for Stratum classifier 55
D.2 Experimental credibility values for TLS SNI classifier 55

vi

List of code listings

1 Stratum request . 7
2 Stratum request used in active probing . 19
3 Bash command used for conversion of a trapcap file into csv 20
4 Complete Regex pattern for matching Stratum request and notification 30
5 Complete Regex pattern for matching Stratum response 30
6 Concatenation of keywords to create one Regex pattern 31
7 Conjuctive combination of mass functions to get pignistic function 33

vii

I am deeply grateful to my supervisor Ing. Karel Hynek for his
professional guidance and help, constant belief in me and all the
devoted hours. I would also like to thank Ing. Tomáš Čejka, Ph.D.
and Ing. Dominik Soukup for their guidance and advice on many
new technological areas which was very valuable when writing this
thesis. In addition, I appreciate the friendly attitude of members of
FIT CTU, FIT BUT and CESNET with whom I had the opportunity
to collaborate with. Last but not least, I would like to thank my
family and friends for their support and patience during my studies,
which I am sure have not always been easy.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and
all corresponding documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This authorization is not
limited in terms of time, location and quantity.

In Praze on May 2, 2022 .

x

Abstrakt

Tato bakalářská práce se zaměřuje na těžbu kryptoměn z bezpečnostńı perspektivy s d̊urazem na
nelegálńı těžbu. Zkoumá možnosti detekce těžeńı kryptoměn ve vysokorychlostńıch poč́ıtačových
śıt́ıch na úrovni monitorováńı śıt’ových tok̊u. Práce obsahuje návrh plaformy pro kontinuálńı
záchyt komunikace, která je použita k vytvořeńı datových sad obsahuj́ıćı komunikaci těž́ıćıch
softwar̊u z realného provozu. Dále je navržena metoda detekce, která je schopna provozu i
na vysokorychlostńıch śıt́ıch. Navržené řešeńı je implementováno jako skupina modul̊u systému
NEMEA. Tato skupina modul̊u byla nasazena a testována na národńı śıti provozované sdružeńım
CESNET.

Kĺıčová slova kryptoměna, miner, mining pool, detekce, monitorováńı śıt’ě

Abstract

This bachelor thesis addresses cryptomining from the security perspective with an emphasis on
abusive mining. It explores the possibilities of detection of cryptominers in high-speed computer
networks using a flow-based monitoring approach. A setup for continuous traffic capture is
proposed and used for creating datasets with real-world miners’ traffic. Furthermore, a detection
method is proposed, capable of operation on high-speed networks. The proposed solution was
implemented as a group of NEMEA modules. Moreover, it was deployed and evaluated on the
national network CESNET2 operated by CESNET.

Keywords cryptocurrency, miner, mining pool, detection, network monitoring

xi

List of abbreviations

AB AdaBoost
AEAD Authenticated Encryption with Associated Data

API Application Programming Interface
AUC Area under the ROC curve
BTC Bitcoin

DASH Dash
DNS Domain Name System
DPI Deep Packet Inspection
DST Dempster-Shafer Theory
DoH DNS over HTTPS
DoT DNS over TLS
ETH Ethereum

FN False Negative
FP False Positive

FQDN Fully Qualified Domain Nam
IDS Intrusion Detection System

IPFIX Internet Protocol Flow Information Export
IPS Intrusion Prevention System
JS JavaScript
L7 Layer 7 of ISO/OSI model

ML Machine Learning
MLP Multi-layer Perceptron

NEMEA Network Measurements Analysis
NIC Network Interface Controller
P2P Peer-to-peer

PCA Principal Component Analysis
Regex Regular Expression
ROC Receiver Operating Characteristic
RVN Ravencoin
SNI Server Name Indication
SSL Secure Sockets Layer

SVM Support Vector Machine
TAP Test Access Port
TBM Transferable Belief Model
TCP Transmission Control Protocol
TLS Transport Layer Security
TN True Negative
TP True Positive

UNSC United Nations Security Council
URL Uniform Resource Locator

XMR Monero
ZEC Zcash

xii

Introduction

Cryptocurrencies have become an essential part of the financial market and part of daily life for
many of us. Some of us invest and trade cryptocurrencies, and some of us also mine them on
our personal computers, meaning that we are using electrical power in exchange for a reward.
Some people might even use company computers, computers belonging to someone else, or cloud
resources which sometimes goes against the policy [1]. Computer resources may also be stolen by
malware and used for cryptomining at the victims’ expenses without them even knowing about
it. Attackers may also use malwertising [2] to hijack victims’ browsers to mine Monero and other
cryptocurrencies [3, 4, 5]. Detection of cryptomining can be used as a defense mechanism and is
needed with more and more attacks.

This thesis was developed in coordination with CESNET1 which expressed the need to protect its
computational resources against abusive mining. CESNET operates several 100 Gbps networks,
but unfortunately cryptomining detection has not been studied very thoroughly on networks with
such speed so far. Additionally, this thesis is meant for network operators who want to protect
their networks against misusing property and wasting electrical power. Detection of cryptomining
in a network may also indicate that the network was attacked and compromised.

We are building our research on the previous work of V. Veselý and M. Žádńık and lots of others
who researched network monitoring, traffic inspection, and detection of miners’ communication.
The main goal of this thesis is to design and implement a reliable detector of cryptomining with
a low false-positive rate. Also, deploy this detector on the CESNET network and evaluate its
outputs. Another goal is to examine the current cryptocurrency situation and create datasets
with example communication for further research.

We focused on how cryptocurrencies and cryptomining work in general and from the point of
view of network monitoring in chapter 1. Furthermore, network monitoring approaches and
previous attempts to detect cryptomining are discussed. Chapter 2 examines the current cryp-
tocurrency situation and mining pools. Miner traffic from a virtual machine is captured and
analyzed. Moreover, it describes how traffic was captured on the CESNET network. We thor-
oughly analyzed captured traffic, proposed the design and described the implementation of our
detector in chapter 3. Evaluation of detector’s results is in chapter 4.

1www.cesnet.cz

1

www.cesnet.cz

2 Introduction

Chapter 1

Theoretical Part

This chapter provides a theoretical background for later work. Basics of cryptocurrencies, mining
process and malicious use of cryptocurrencies are discussed. In addition to this, we examined
previous attempts at detection of cryptomining. Network protocols necessary for mining, in-
troduction to network monitoring and its tools are described. Moreover, ground zero ideas of
machine learning are summed up with an overview of selected machine learning models. Lastly,
the essentials of a mathematical theory for a combination of probabilities are presented, called
the Dempster-Shafer Theory.

1.1 Cryptocurrency
Cryptocurrencies are digital money based on decentralization, strong cryptography, and Blockchain
technology. The first and most famous cryptocurrency, Bitcoin, originated in 2008 when Satoshi
Nakamoto published his whitepaper called “Bitcoin: A Peer-to-Peer Electronic Cash System” [6].
From that point, many new cryptocurrencies appeared. According to Phipps [7], 7% of the world’s
money, $2.48 trillion, is involved in cryptocurrency to the 24.01.2022.

Based upon Nakamoto [6], cryptocurrencies use distributed peer-to-peer networks, shown on the
figure 1.1 in which there is no central point or machine, nodes of a network communicate directly
with each other. Thus, two willing parties can transact directly with each other without the need
for a trusted third party [6]. Cryptography is used to achieve trust in such environment.

Crosby et al. [9] define Blockhain as “a distributed database of records, or public ledger of all
transactions or digital events that have been executed and shared among participating parties”.
Each block has a timestamp, a group of transactions, and a parent block hash which creates
the reference and forms a chain (shown on the figure 1.2). The first block of this chain is called
genesis block and has an empty reference to the parent block. Moreover, entered records cannot
be erased [9].

Even though cryptocurrencies use wallet addresses, it is still possible to follow transactions in
Blockchain and piece together someone’s information [10]. Privacy coins, discussed by Hay-
ward [10], are types of cryptocurrencies that use several cryptographic techniques to protect user
details. Some examples are Monero (XMR), Zcash (ZEC) and Dash (DASH). Thanks to this,
users can choose which information will be shared with external parties. On the contrary, private
coins became widely used in ransomware attacks and other illegal activities and for this reason,
privacy coins have been banned in Japan and South Korea [10, 11].

3

4 Theoretical Part

Figure 1.1 Blockchain P2P network, taken from [8]

PREVIOUS BLOCK HASH

BLOCK HASH

DATA
(TRANSACTIONS)

BLOCK i-1

PREVIOUS BLOCK HASH

BLOCK HASH

DATA
(TRANSACTIONS)

BLOCK i

PREVIOUS BLOCK HASH

BLOCK HASH

DATA
(TRANSACTIONS)

BLOCK i+1

Figure 1.2 Blockchain structure

1.1.1 Mining and mining pools
Ghimire et al. [12] described miners as “individuals who secure cryptocurrency’s network”. Min-
ing is described as “the process of adding transaction records to cryptocurrency’s public ledger
of past transactions or Blockchain” [12]. This process involves solving a puzzle — a hard math-
ematical problem. Mining of a new block is rewarded by obtaining coins of the cryptocurrency
(either new coins or transaction fees). Thus, a miner uses electrical power in exchange for a
reward. Two types of mining were described by Tarman [13] – solo and pooled.

Tarman [13] described solo mining as “an attempt to confirm blocks of transactions on the
Blockchain alone, as an individual miner”. Miner will get block rewards and transaction fees
all by himself —- large payments within longer intervals. Miners who are mining solo have to
communicate directly with the cryptocurrency’s network. Unfortunately, there is a high chance
that solo mining will not produce any reward [13].

The other type of mining described in [13] is pooled mining. Miners connect to a mining pool
and share resources in order to mine blocks more often, see figure 1.3. Rewards for mined blocks
are split, providing smaller but steady payments. Usually, splits are based on the work done by
a miner, but exact settings depend on the pool operator [14]. This allows the miner to get a
reward even if he is not the one who generated the new block. Pool’s strength is measured in
the overall hash rate — “combined computational power that is being used to mine and process
transactions” [15]. It can also be interpreted as the number of hashes a pool is able to generate
per second.

Based on Bitcoin Developer Guides [14], the mathematical problem that miners must solve in

Cryptocurrency 5

Figure 1.3 Comparison of solo and pooled mining, taken from [13]

the case of Bitcoin is to find a hash of a nonce (number used only once) and a block header.
For this hash to be valid and accepted, it has to be below the target threshold, meaning that
this hash has to start with a certain number of leading zeroes (based on the difficulty). We will
now focus on the process of solo mining. Firstly, new transactions are fetched from the network,
and a block header is generated. Miner then starts calculating hashes from the block header and
every possible value of the nonce. If a valid hash is found, the block is completed (or mined) and
broadcasted to the network for others to add it to their Blockchain.

Pooled mining described in [14] is very similar but has one main difference. The miner does not
get new transactions from the network but connects to a mining pool and asks for work. The
mining pool will reply with data necessary for mining. When the miner finds a valid hash, he will
notify the pool. Difficulty in a mining pool is usually set slightly below the network’s difficulty.
This causes miners to send results to a pool more often. The majority of these hashes are not
valid but are used to prove that miner did his share of work. Such messages are called share
messages [14]. Some hashes will also be below the network’s difficulty — a new block is found
and broadcasted to the network by the mining pool. The mechanism of share messages can also
be used to split rewards and fees to miners based on what percentage of shares they did.

1.1.2 Mining protocols
Plenty of mining software is available [16]. Each mining software implements a specific algorithm
for a cryptocurrency it is meant to mine. Moreover, it has to implement network protocols for
communication with a mining pool such as Getwork or Stratum [14, 17, 18]. Other network
protocols are needed for communication or directly used by mining protocols, such as TCP, DNS
and TLS [14, 19]. P2P Network is used by solo miners and mining pools for communication with
the whole cryptocurrency network [14].

Transmission Control Protocol (TCP), invented by Cerf et al. [20], is “a connection-oriented, end-
to-end reliable protocol” [21]. It is the most popular protocol for reliable and connection-oriented
data transfer from the transport layer [22]. This protocol is used for ordered and error-checked
delivery of a stream of bytes. Connection is established by a three-way handshake before sending
any application data.

Transport Layer Security (TLS) is a protocol from the application layer whose primary goal is to
“provide privacy and data integrity between two communicating applications” [23]. It is also a
successor of the Secure Sockets Layer (SSL) [24]. As described in [23], TLS connection is private
— data are encrypted via symmetric cryptography and unique keys are used for each connection.

6 Theoretical Part

Figure 1.4 Stratum requests sent by a miner to a mining pool (blue) and vice versa (red) [27]

Moreover, the TLS connection is reliable since it is built on the TCP.

Domain Name System (DNS) is meant to “provide a mechanism for naming resources in such
a way that the names are usable in different hosts, networks, protocol families, internets, and
administrative organizations” [25]. It is used for resolving FQDNs (fully qualified domain names)
of mining pools to their IP addresses. Moreover, DNS over TLS (DoT) or DNS over HTTPS
(DoH) can be used [26]. DNS requests are wrapped and encrypted by TLS or HTTPS to make
them private and secure.

As described in Bitcoin Developer Guides [14], Getwork RPC was the first communication pro-
tocol used by mining pools and miners. This protocol is constructing block headers for miners
directly. Modern miners need to make hundreds of requests per second. We will not discuss this
protocol since it is deprecated [14]. GetBlockTemplate RPC was an improved mining method [14].
As described by Žádńık et al. [27], block creation is done by miners instead of pools, creating a
more decentralized environment. It also reduces mining protocol overhead.

Stratum (Stratum V1), described in [17], is currently the most frequently used mining protocol.
It was introduced in 2012 and was firstly implemented on Bitcoin.cz Mining Pool (called Slush
Pool nowadays) [17]. Stratum uses plain TCP sockets where packet payloads are JSON messages
(based on JSON RPC 2.01) with “\n” at the end. There are three message types — request,
response, and notification. The structure of typical JSON carried by Stratum is shown on the
listing 1. Moreover, communication between a miner and a mining pool is shown on the figure 1.4,
blue requests are sent by a miner to a mining pool and red requests are vice versa (a mining pool
to a miner).

Stratum network protocol specification [28] defines two formats of messages — request and
response. Every RPC request has the following fields:

ID — integer, string or null

method — unicode string

parameters — list of parameters

Moreover, requests can be of two types. The first one is part of the RPC standard, this type
expects a response. The other type of request is called notification and does not expect a response.
These two types can be distinguished by the value of id, notification has id set to null.

1www.jsonrpc.org/specification

www.jsonrpc.org/specification

Cryptocurrency 7

{
"jsonrpc":"2.0" ,
"method":"job" ,
"params":
{

"blob":"..." ,
"job_id":"687" ,
"target":"f3220000" ,
"height":2470181,
"seed_hash":"..." ,
"next_seed_hash":""

}
}

Code listing 1 Stratum request (values in blob and seed hash are omitted)

Stratum response has the following fields:

ID — same ID as in request (for pairing request-response)

result — any JSON encoded result

error — null or list (error code, error message)

Stratum V2, defined in [18], is the Stratum’s direct successor. JSON RPC 2.0 was replaced by a
binary format to reduce overhead. Therefore, messages are no longer human-readable. The size
of a typical share message in V1 is approximately 100 bytes compared to 32 (48 if encrypted)
bytes in V2. Moreover, the new version implements AEAD (authenticated encryption with
associated data) to prevent Man-in-the-Middle (MITM) attacks. It is currently implemented in
Braiins OS and Braiins OS+, and it is expected that Stratum V2 will be a new open standard
in mining [18].

The last mentioned protocol above, the P2P Network protocol, is used to “collaboratively main-
tain a peer-to-peer network for block and transaction exchange” [14]. This protocol is used for
distributing Blockchain and transactions. However, networking rules are not covered and there-
fore alternative protocols may be used. Since we are mainly focusing on pooled mining, we will
not discuss these protocols in detail.

1.1.3 Abusive mining
Cryptomining is a highly competitive process since you need to be the first to receive a reward
and therefore more hashes you are able to calculate, you have a higher chance of being the
first one. Mining malware or illicit cryptomining refers to mining carried out by criminals using
resources stolen from their victims [29]. It is a way to use more devices, increase your overall
hash rate and the chance for a reward. Especially Monero became very popular when it comes
to mining malware since it is known to be hard to trace [10]. Nearly 5% of Monero coins (with
a value of almost $40 million at that time) in circulation in 2018 were mined by malware [30].
Specialists from McAffee [31] reported that “coin miner malware” grew more than 4000% in the
year 2018.

8 Theoretical Part

Pastrana and Suarez-Tangil spent 12 years on their work [29] analyzing mining malware. They
described two possible types of mining malware:

Browser-based cryptomining

Binary-based cryptomining

Browser-based cryptomining, also called cryptojacking, uses scripts to run in web pages (typically
JavaScript). Mining process starts when a user visits a web page. Binary-based cryptomining
uses malware to infect a machine connected to the Internet and then runs a binary that handles
the mining process. Attackers can gain the hash rate of a medium-sized mining farm by using
hundreds of infected machines. Moreover, they say: “Overall, we estimate there are at least 2218
active campaigns that have accumulated about 720K XMR (57M USD). Interestingly just a single
campaign (C#623) has mined more than 163K XMR (18M USD), accounting for about 23% of
the total estimated. This campaign is still active at the time of writing.” [29].

Mining malware also targets corporate networks. A cybersecurity company called Sophos, which
had over 500 000 businesses as customers last year [32] published a detailed report [33] of how
mining malware gets into networks. We also found an example of cryptojacking on a larger scale.
UN Security Council (UNSC) found a malware mining Monero that sent mined coins to the
servers located at Kim Il Sung University in Pyongyang. The Republic of Korea Financial Secu-
rity Institute attributed a similar cryptojacking attack on a South Korean company [34].

1.1.4 Previous attempts of mining detection
The study performed by Jingqiang et al. [35] focused on the detection of browser-based “silent
miners”. Their method uses a sandbox for loading a page and then analyzes the website’s
resources to detect Javascript (JS) miners. Liu et al. [36] even uses electricity consumption
data to recognize Bitcoin miners. Swedan et al. [37] proposed Mining Detection and Prevention
System (MDPS) based on the mitmproxy. Their proposed solution uses URL blacklists, detection
of mining code and VirusTotal API for further URL investigation. Kharraz et al. [38] inspected
cryptojacking libraries in their work. JS compilation time, JS engine execution time, garbage
collection and other statistics were used as features for ML models. The best model (SVM)
had above 95% true positive rate. However, the papers mentioned in this paragraph are not
relevant for the purposes of this thesis since they use different approaches and are not further
discussed.

Muñoz et al. [39] presented a machine learning method that is able to detect cryptocurrency
miners using NetFlow/IPFIX network measurements. The presented method does not need
to inspect packets’ payload but still achieves similar accuracy as the DPI-based techniques.
Captured traffic was analyzed and it was determined that miner flows are long duration and
have a small number of transferred packets. Moreover, a server typically sends 20 times more
data than a client. Models were then trained on several features:

1. Inbound and outbound packets/seconds

2. Inbound and outbound bits/seconds

3. Inbound and outbound bits/packet

4. Bits inbound/bits outbound ratio

5. Packets inbound/packets outbound ratio

The best model was Naive Bayes which achieved an average accuracy of 96.3%.

Žádńık et al. [27] examined two approaches for miners’ communication detection in their paper.
The first discussed approach combines active and passive detection to learn a list of existing

Network monitoring 9

mining pools slowly. The second approach contains a web application used as a catalog of
existing mining pools publicly available to anyone for querying.

The first discussed approach by Žádńık et al. [27] combines passive detection and a secondary
verification of false positives by active probing. A feature vector is created from flow data and an
ML-based detector decides if flow looks like the miner’s communication. Many false positives can
occur at this stage due to the heuristic nature. Active probing is then used to verify if a server
where the client is connecting is really part of a mining pool structure. Several packet traces of
miners connecting to well-known mining pools were analyzed in order to select features for ML.
During this analysis, it was discovered that miners’ traffic has the following characteristics:

1. Mutual communication between a miner and a mining server often lasts for several hours

2. Packets are generally small, often in the range from 40 to 120 bytes

3. Most flows are observed with TCP ACK and PUSH flags set

4. The destination port is either a well-known port of a different service or not well-known but
definitely lower than the source port

5. Flows are generally long-lasting, often exported before its end due to an active timeout

6. Communication is not disrupted, i.e., most flows do not contain the RST flag

However, it was determined that this design has performance issues, primarily because of the
active probing.

The second discussed approach by Žádńık et al. [27] describes a web application containing meta-
information about mining pools. This catalog is available to the public and anyone can query the
database – the name of the pool and its URL, the list of pool servers (FQDN and ports), list of
IPv4 and IPv6 addresses (gained by resolving FQDNs). Basic mining pool information is collected
manually by the application’s operators. The list of resolved IP addresses is automatically
renewed every day. Moreover, the application supplies data for the detector from the first
approach, and results from active probing are stored in the application’s database. The systems
described in both steps work together to keep an up-to-date list of mining pools.

1.2 Network monitoring
As proposed in [40], we may monitor computer networks from different points of view. Network
monitoring focuses on the status and performance of a network. It detects malfunctioning de-
vices, overloaded resources, etc. Three main metrics are measured — availability, performance
and configuration [40, 41]. As an alternative, network security monitoring is used to secure a
network, protect transmitted data and prevent downtime. Moreover, it is “a detection-oriented
and response-based approach to protecting against intrusions and vulnerabilities” [41]. Network
security monitoring must also detect intrusions, attacks, anomalies and send alerts for the man-
ual investigation to network administrators. Both types of monitoring use several approaches
described later in this chapter.

Sihyung Lee et al. [42] analyzed existing network monitoring principles, their issues and possible
future directions. They state that monitoring is crucial for managing networks and can be used
for many critical tasks. The major function of network monitoring is the early identification of
trends and patterns in both network traffic and devices. Monitoring can help network operators
to find vulnerabilities in servers, limit the specific type of traffic to avoid dropping packets of
other types and more. According to their work, late detection can lead to prolonged service
disruption and financial losses up to millions of dollars. Moreover, they described two types of
network monitoring approaches — active or passive.

10 Theoretical Part

Active approaches described in [42] inject the test traffic into a network to perform a measurement
and usually run on an end-system. Thus, the impact on regular traffic needs to be minimal. The
size and frequency of the active probing are used for measuring the impact. Ping and tracert (on
Windows, traceroute on Linux) are tools implementing active network monitoring approaches.
This can be used to directly measure or inspect a specific incident of interest. Based on this
whitepaper [43], active monitoring can also be used to simulate user behavior.

On the contrary, passive approaches, described in [42], do not inject any traffic into a network
and only “eavesdrop” the traffic which already exists. This type of monitoring either runs on
a dedicated device or is performed directly by network devices (routers, switches, . . .). Passive
approaches are non-intrusive and affect the monitored network less than the active approaches.
They observe the actual behavior of a network. However, it can take a long time to observe a
specific incident of interest. As pointed out here [43], data can be collected only from owned
devices therefore leaving potential gaps for the complete monitoring.

Monitoring approaches are usually combined together since they both offer different measurement
capabilities needed in different scenarios. Network operators can therefore use any combination
which suits their needs [43].

According to Svoboda et al. [44], simple manual monitoring may be easy to use when the amount
of monitored data is small. Otherwise, there may be so much information that it gets lost in
the sea and it may become more technologically demanding to handle and store the data. Thus,
they analyzed several network monitoring approaches, their trade-offs and more.

The first group of analyzed approaches by Svoboda et al. [44] is called traffic duplication. Traffic
going through a cable is duplicated and the copy is analyzed. There are two methods of dupli-
cation — inline and mirroring. Inline duplication is done via a special device placed directly on
the cable. Mirroring is done via a built-in feature of a router or a switch. Traffic mirroring can
be done in several ways: port mirroring, TAP or TAP-like setup using bypass NICs.

The second group described by Svoboda et al. [44] is called packet capture. It allows us to save
packets passing through a network interface to a file or pass them directly to network traffic
analyzers. Such obtained packets are the exactly same as on the line they were captured from.
Packet capture can also be viewed as a network monitoring approach consisting of the two basic
steps — creating the packet capture file and performing the traffic analysis afterward. Analysis
can be both automatic or manual (usually in the case of a few selected packets). Captured traffic
is also usually seen as a series of IP packets (level 3 of the OSI model).

1.2.1 Deep Packet Inspection
Deep Packet Inspection (DPI) was described by Svoboda et al. [44] as an automated approach for
packet inspection. Brook [45] compared DPI and conventional packet filtering, which only works
with packet headers. This basic approach was dependent on the processing power of firewalls
which was very low at the time. DPI not only reads headers but is also able to work with the
payloads of IP packets. Network administrators and other users can set up rules for filtering
spam, viruses and other malicious content. There are two types of DPI-based analysis — pattern
matching and event-based analysis [44].

Furthermore, Brook [45] proposed that DPI can be used as an intrusion detection system (IDS),
an intrusion prevention system (IPS) or their combination. It is a fundamental defense element
capable of the prevention of spreading worms, spyware, viruses and they can even detect the usage
of prohibited applications in corporate networks. It can also prevent leaking classified files and
information leakage in general. Another use case is to separate traffic by priority. We can label
traffic by importance and DPI can let high-priority traffic pass through before the regular one.
We can also control peer-to-peer downloading — decreasing the speed of data transfer.

Network monitoring 11

PACKET
DECODER

EVENT
GENERATOR

SCRIPTING
ENGINE LOGS

Figure 1.5 Event-based DPI

According to Svoboda et al. [44], DPI-based analysis based on pattern matching is a method of
searching byte sequences or Regex patterns through full data. It is a simple and often straight-
forward method but may not be enough. We may want to decode the data before the pattern
matching or process them in some way, the typical example is compression. We are not able
to create a Regex pattern to handle the decompression. Fortunately, monitoring devices imple-
menting DPI can decode most protocols nowadays. Suricata2 and Snort3 are implementations
of pattern matching based DPI [44].

The other DPI approach described by Svoboda et al. [44] consists of the event-based analysis.
Packets are processed into events that are processed by scripts afterward (shown in figure 1.5).
Such scripts may implement complex algorithms and provide advanced functionality, solving
shortcomings of the simple pattern matching-based DPI. Simple pattern matching is therefore
replaced by more advanced programs (even though pattern matching can be implemented as
such program). Moreover, algorithms can be stateful, meaning that they can remember the state
between event occurrences via variables.

For the correct functionality, traffic inspected by DPI must not be encrypted. Therefore, we can
only inspect traffic from unsecured sources. A possible way for inspecting encrypted traffic is
using custom certificates on devices under our control, so a network node performing DPI can
decrypt the traffic beforehand.

As mentioned by Hoffman [46], DPI is used by the so-called Golden Shield project, also known as
The Great Firewall of China. This project aims to censor China’s Internet by several technical
procedures. Specifically, DPI is used for detecting sensitive content in unencrypted packets —
keywords in search engine queries and more [46].

1.2.2 IDS/IPS Systems
An intrusion Detection System (IDS) is a “software or an appliance that detects a threat, unau-
thorized or malicious network traffic” [47]. As also mentioned in [47], the purpose of IDS is
to provide monitoring, auditing and reporting of the malicious activities on a network. Fuchs-
berger [48] described several types of IDS systems. Behavior-based IDS uses statistical techniques
to detect anomalies and if a threshold is exceeded, an alert is generated. This could be for ex-
ample a number of failed logins. On the contrary, Knowledge-based IDS looks for known attack
patterns of the network traffic, such as byte sequences which are known to cause buffer overflow
attacks. Host-based IDS typically runs on the sensitive hosts as an application and analyzes log
files. The last described type by Fuchsberger [48] is Network-based IDS which analyzes network
traffic on the packet level. Both packet headers and payloads are searched for attack signatures
and generate alerts when a match is found.

As explained in [48], due to financial losses from downtime, information leaks and others, the
2www.suricata.io
3www.snort.org

www.suricata.io
www.snort.org

12 Theoretical Part

market demanded systems that not only detected attacks but were also able to prevent them,
known as the Intrusion Prevention Systems. Intrusion Prevention System (IPS) is “a product that
focuses on identifying and blocking malicious network activity in real time” [48]. Fuchsberger [48]
described two types of IPS. Rate-based IPS manipulates the network traffic based on load (too
many packets, connections, and more). Moreover, it can be used to limit number of queries to
DNS servers or to limit traffic traveling to a given port or a service. Content-based IPS (also
known as a signature- and anomaly-based) manipulates traffic based on attack signatures. It
can be used to block worms, packets that do not comply to the TCP/IP RFCs and suspicious
behavior such as port scanning.

1.2.3 Flow-based network monitoring
Crotti et al. [49] state that mechanisms to classify network traffic based on full packet analysis
are becoming ineffective. These mechanisms are too computationally demanding due to the
increasing number of Internet users and services and can not be used on high-speed networks [49].
Flows and flow-based monitoring address this problem. Only the packet headers are analyzed,
leaving the carried data untouched. A flow is defined as “a set of packets or frames passing an
Observation Point in the network during a specific time interval” [50]. As mentioned earlier, a
flow typically works only with packet headers, so it is less privacy-sensitive when compared to the
classical DPI. Moreover, it significantly reduces the amount of data that needs to be processed
and analyzed. Thus, it is more scalable in high-speed networks, but data can still easily exceed
tens of terabytes [51].

Packets are aggregated into flows by the flow key, which is a hash calculated from the following
values:

1. Source IP address

2. Destination IP address

3. Source port

4. Destination port

5. Used protocol on the transport layer

According to Hofstede et al. [51], typical flow-based network monitoring setup has several stages
(shown on figure 1.6). Firstly, packets are captured and pre-processed by the observation points.
The second stage consists of aggregating packets into flows (metering process). After a flow is
considered terminated, it is exported (exporting process) by a flow export protocol — added
to a datagram of this protocol. Datagrams may include both flow characteristics (such as IP
addresses, ports, . . .) and measured properties (byte and packet counters, . . .). Exported flows
are then pre-processed (data compression, . . .) and stored in the data collection stage. The last
stage is data analysis which usually includes classification, anomaly detection, and more.

IPFIX is defined as “a unidirectional, transport-independent protocol with flexible data repre-
sentation” [52] (flow export protocol) and is used for encapsulation and transportation of flow
records.

A flow can be considered terminated because of three reasons. In the case that a flow has
been active for a certain period of time, active timeout aims to help with such long-lived flows
periodically. Typical active timeout values range from 120 seconds to 30 minutes [51]. Another
reason is due to passive timeout. This means that there have not been any observed packets
belonging to a flow and therefore it is considered terminated. Typical values are from 15 seconds
to 5 minutes [51]. Lastly, resource constraints are defined, meaning that a flow can be considered
terminated in advance to save resources.

Network monitoring 13

Figure 1.6 Flow-based network monitoring architecture, taken from [51]

1.2.4 NEMEA

According to Čejka et al. [53], there are several methods for detecting malicious attacks based
on the flow data. Nevertheless, since attacks are getting more sophisticated, flow data are not
sufficient for detection. Headers of the application layer (L7) may be needed for reliable detec-
tion. Unfortunately, there is a lack of tools that supports parsing of L7 information. Network
Measurements Analysis (NEMEA) is a platform for stream-wise traffic analysis and anomaly
detection to overcome this problem.

Čejka et al. [53] proposed NEMEA as a heterogeneous modular system where modules are chained
together by unidirectional interfaces. These interfaces transfer data in streams of messages which
can be flow records, analysis results, alerts and more. Each module performs a specific task
such as flow data preprocessing, filtration, anomaly detection or logging and reporting results.
Modules can be interconnected in various ways and NEMEA deployments can be composed of
entirely different sets of modules performing needed tasks. NEMEA is therefore very flexible and
offers a high level of customization.

A typical network monitoring setup, as proposed by Čejka et al. [53], is shown in figure 1.7.
Monitoring probes capture packets, export flow data, and contain plugins for parsing L7 infor-
mation and extending classical flow data. Flow data are then sent to the central collector, which
stores and resends them to the NEMEA system for analysis. Module interconnection usually
forms a directed acyclic graph or a tree, as shown in figure 1.8. A single module, the root of this
tree, usually serves as an input to all other modules. It either creates or gathers flow records
and sends them to its output for further processing. On the other side of this three are modules
used for reporting. CESNET in its deployment uses a plugin for the IPFIXcol as the root. This
module receives and parses IPFIX messages from the monitoring probes, translates them into
the NEMEA message format and sends them to its output.

As mentioned above, NEMEA modules use a particular format for communication — UniRec,
which was also described by Čejka et al. [53] It is a generic and efficient binary format for
storage and transfer. It also supports variable-length fields and allows to define specific formats
via templates. Furthermore, NEMEA supports JSON format and unstructured data. However,
these two formats are not commonly used. The main advantage of UniRec against the other
formats is that it allows very fast access to the flow fields. It does not require to be parsed and
allows direct reading. Almost as fast as a plain C struct with the advantage that UniRec can be
defined in runtime [53].

14 Theoretical Part

NETWORK PROBE

NETWORK PROBE

COLLECTOR NEMEA

Figure 1.7 Network monitoring setup with NEMEA

COLLECTOR PREPROCESSING DETECTION

LOGGER

ALERT

Figure 1.8 Internal architecture of NEMEA

1.3 Machine Learning
Mahesh [54] described Machine Learning (ML) as “the scientific study of algorithms and sta-
tistical models that computer systems use to perform a specific task without being explicitly
programmed”. ML uses different algorithms (models) to perform its tasks. The model is fit
to the training data during the training phase and the model’s exact parameters are deter-
mined [55]. Trained algorithms can make predictions afterward on the previously unseen data.
IBM Cloud Education [56] divides ML methods into three categories — supervised, unsupervised
and semi-supervised.

Based on [56], supervised ML uses labeled datasets — every sample has a label containing its
true class. Labels are used in a process called cross-validation to evaluate if a model is trained
appropriately. These methods can be used to classify emails as spam and many other real-world
problems. Linear and logistic regression or random forests are examples of such methods.

On the contrary, unsupervised ML uses algorithms to cluster and analyze unlabeled datasets [56].
Algorithms are able to discover hidden patterns or groups of data on their own, without the need
of human touch. It is suitable for data analysis, image and pattern recognition. An example
of such algorithm is the principal component analysis (PCA). PCA is able to reduce number
of features in a model [57]. Other examples are K-means clustering or probabilistic clustering
methods.

Semi-supervised ML was also described in [56]. It combines two previously described methods
together. Small labeled dataset is used for feature selection during training. This is useful when
we do not have enough labeled data for training a supervised ML algorithm. Moreover, IBM
Cloud Education [56] mentions Reinforcement ML. There is no training phase and a model learns
“as it goes by using trial and error” [56]. A deeper examination is however out of the scope of
this thesis.

Ensemble learning is a method that uses several ML models and combines them together for
better performance. Mahesh [54] described ensemble learning as “the process by which multiple
models, such as classifiers or experts, are strategically generated and combined to solve a par-
ticular computational intelligence problem”. Sagi et al. [58] explained that the base premise of

Dempster-Shafer theory 15

ensemble learning is that errors of a single model will likely be compensated by others and the
overall prediction would be improved.

According to Pykes [59], ML algorithms can be used for solving two types of problems. Clas-
sification problems involve predicting labels (discrete values). On the other hand, regression
problems predict quantities (continuous real numbers).

1.3.1 Selected supervised ML algorithms
K-nearest neighbors algorithm (KNN) was initially developed by Fix et al. [60]. KNN algorithm
uses similarity and makes predictions based on the k-nearest neighbors [61]. The majority vote
of neighbors is used to obtain the final prediction. The training phase only consists of storing
features and labels.

Logistic regression uses independent variables as predictors of the dependent variable [62]. It is
used to predict categorical dependent variables [63], which are in range between 0 and 1 [62].
On the contrary, linear regression is primarily used for regression problems [63] since it makes
predictions on continuous dependent variables. Linear and logistic regressions both use dependent
and independent variables [63] and are very similar.

Based on Gupta [64], Decision tree is a model which uses a tree for making predictions. Internal
(non-leaf) nodes have input features and they represent a split. Edges coming from a node are
labeled with each possible value of the input feature. Each leaf is labeled with a class or class
probabilities. The model’s tree is built by splitting the training dataset into subsets by several
rules (which can be tuned by hyperparameters). This process is recursively repeated. Decision
trees are favorite and widely used due to their explainability — a tree can be visualized and
reviewed.

As described by Breiman [65], Random forest is an ensemble algorithm that uses multiple decision
trees to significantly improve prediction accuracy by “letting them vote for the most popular
class” [65]. Akar et al. [66] state that trees are grown using random feature selection and creates
a new training dataset for each of them. Random forests are very fast, robust and achieve
significantly better performance than a single decision tree [66].

Adaptive Boost (AdaBoost) is another ensemble learning method. Schapire [67] explained that
boosting uses a lot of weak and inaccurate rules, combines them and creates a highly accurate
prediction rule. AdaBoost was the first practical algorithm to use boosting method [67].

Some of the models described here are shown on the figure 1.9.

1.4 Dempster-Shafer theory
Dempster-Shafer Theory (DST) is a mathematical theory of evidence. Original work [68] of
Arthur P. Dempster was later expanded in [69] by Glenn Shafer. It is a generalization of the
Bayesian theory of subjective probability. The DST is based on two ideas: the idea of obtaining
degrees of belief for one question from subjective probabilities for a related question and Demp-
ster’s rule for combining such degrees of belief when they are based on independent items of
evidence [70]. The Bayesian theory requires probabilities for each element, but the DST allows
us to base degrees of beliefs for one question on other related questions. Degrees of beliefs defined
this way may or may not have mathematical properties of probabilities. It depends on how the
questions are related.

It was also presented in [71] as the “Evidence Theory”. Pieces of evidence can be seen as events
that occurred or can occur in a system. Evidence implies a hypothesis or sets of hypotheses.
The DST initially assumes a Frame of Discernment, shown in the equation 1.1, which is defined

16 Theoretical Part

?

K=3

K=7

(a) KNN

F1 < T1

F2

CLASS
A

CLASS
B

CLASS
C

Yes

D E F

F3 >= T2

No

CLASS
B

CLASS
C

Yes No

(b) Decision tree

INPUT
SAMPLE

MODEL 1

MODEL 2

MODEL N-1

MODEL N

COMBINATION PREDICTION

(c) Ensemble ML architecture

INPUT
SAMPLE

TREE 1

TREE 2

TREE N-1

TREE N

MAJORITY
VOTING PREDICTION

(d) Random forest

Figure 1.9 Selected ML models

as a set of primitive hypotheses. Another set is then formed by all subsets of Θ, creating the set
containing all possible hypotheses (power of two), shown in the equation 1.2:

Θ = {h1, h2} (1.1)
2Θ = {∅, {h1}, {h2}, {h1, h2}} (1.2)

As described in [71], degrees of belief of elements of 2Θ are represented by the mass function.
The mass function indicates how strong a piece of evidence supports a hypothesis or how much
an evidence agrees with a hypothesis. This is expressed by a number from 0 to 1. The DST
requires that the sum of masses assigned to hypotheses is equal to 1.

Moreover, multiple sources of evidence can be combined together via the Dempster’s Rule of
Combination to produce a better estimate about hypotheses. It combines multiple mass functions
and produces a new mass function that represents original hypotheses and possibly conflicting
pieces of evidence. As described by Smets [72], another rule, the conjunctive combination rule,
was derived from the original Dempster’s Rule of Combination. This is used to compute degree
of belief bel(A ∧ B) from bel(A) and bel(B).

The transferable belief model (TBM) is Smets et al.’s [73] interpretation of the DST. TBM is a
two-level model:

1. Credal level — beliefs are taken into consideration

2. Pignistic level — beliefs are used to make decisions

Belief functions represent beliefs at the credal level and are updated in time. On the contrary,
only when a decision has to be made the pignistic level appears. When the pignistic level appears,
belief functions are transformed via the pignistic transformation to probability functions which
are used to make a decision. A real-world example usage can be found in [74] and [75], however
further study of this topic is out of the scope of this thesis.

Chapter 2

Datasets

To be able to design a detector, we needed a sufficient amount of example data of both miner
and non-miner traffic. We decided to collect traffic on the CESNET2 network (operated by
CESNET) to get as much real-world data as possible. This chapter describes how we selected
cryptocurrencies for further investigation and how the traffic was captured.

2.1 Current situation of cryptocurrencies
As mentioned by Chatzigiannis et al. [76], it is almost impossible for solo miners to compete in
the mining process, even with specialized hardware. They also state that the vast majority of
miners is connected in mining pools, which was also our assumption. Therefore, we will only focus
on pooled mining. As the first step, we decided to inspect current situation of cryptocurrencies
and mining pools and select a couple of them for our follow up work. We chose Bitcoin (BTC)
because it is the most famous cryptocurrency and has currently the biggest market cap [77]
(total value of all mined coins [78]). The second selected cryptocurrency is Ethereum (ETH). It
is also a very famous cryptocurrency and has the second biggest market cap [77]. In addition, we
selected Monero (XMR) because a significant amount of coins is mined by malware (as described
in subsection 1.1.3). Overview of the selected cryptocurrencies:

1. Bitcoin (BTC) — well-known crypto, the biggest market cap

2. Ethereum (ETH) — well-known crypto, the 2nd biggest market cap

3. Monero (XMR) — significant % of mined coins comes from malware

We also chose the top 10 mining pools by the overall hash rate for each selected cryptocurrency.
Source for BTC pools is [79], ETH pools are based on [80] and XMR pools come from [81].
Furthermore, we extracted mining protocols and opened ports for mining, so we can later use
this information for traffic capture. Some pools required registration or did not allow the public
to mine at all. We still decided to include them in our list to demonstrate the percentage of
“private” pools in the top 10. Complete overview of the selected mining pools, mining protocols
and ports is available in the appendix A.

After inspection of the extracted data, we can state that every pool has either directly specified
Stratum as the used mining protocol (marked as “Stratum” in the appendix A) or mentions
Stratum in a “Help” section with example configurations of the mining software (marked as
“Stratum?”). Apart from Stratum, SlushPool also supports its own and newly created protocol

17

18 Datasets

Stratum V2. Moreover, one pool mining ETH also supports the Getwork protocol but simul-
taneously supports Stratum as well. We suspect this is for legacy reasons. The majority of
mining pools also supports connection via TLS/SSL. A significant amount of miner traffic may
be encrypted and protected against the DPI-based detection methods.

2.2 Local examination of miners’ traffic
Before capturing traffic on the CESNET network, we decided to examine the traffic generated
by a miner run locally in a virtual machine. Firstly, we prepared the virtual machine with
Debian 11, 8 GB RAM, 8 processor cores and installed XMRig (miner software1 for Monero).
We used Wireshark2 for traffic capture and inspection. Then we let the miner run for several
hours. We also connected to the three different mining pools to see if there was any difference.
Every mining pool we connected to used Stratum as the mining protocol.

Based on our few observations, we can state that miner’s communication is long-lasting and
undisturbed. Packets of small sizes are transferred in periodical time intervals, in our case usually
between 30 and 70 seconds. However, we suspect it can differ based on the used mining software
and the computational power of hardware it is running on. Most packets had the TCP PUSH
flag set. Moreover, number of request and response packets was almost balanced. However,
due to possible network problems and notifications (defined in 1.1.2) it was not precisely 50%.
Finally, we did not find any visible difference between traffic based on a mining pool the miner
connected to.

We suspect that traffic generated by instant messaging applications (such as Facebook Messenger
and others) or generic checking for updates can have similar characteristics. This observation
is also based on the previous work (described in subsection 1.1.4). This could potentially cause
false predictions and increase the number of false positives.

2.3 Traffic capture on CESNET
After the initial inspection of miners’ traffic (described in section 2.2), we decided to capture
traffic on the CESNET network. We used the information extracted from mining pool websites
(described in section 2.1) to create a rule to filter traffic. We resolved mining pool FQDNs to
both IPv4 and IPv6 addresses and paired them with corresponding ports. This produced pairs
of IP addresses and ports which were then concatenated into a rule. This rule was then used for
traffic capture.

However, this rule will not cover potential changes in mining pools’ architectures. As described by
Žádńık et al. [27], mining service may be available on the new servers to improve load balancing.
Moreover, servers can be rented in the cloud and cloud providers often rotate IP addresses [27]
and therefore mining pool servers hosted in such way can often have different IP addresses over
time. A possible solution was to use active probing for each flow to determine if one of the IP
addresses belongs to a mining pool. However, that would be slow as described in subsection 1.1.4
and we could be potentially marked as a scanner and blacklisted on the network borders. In
addition, it raises an ethical question. We decided to collect several mining pool lists online,
merge them together and run a script (described below) periodically to re-generate the traffic
capture rule once per day.

We created a simple Python script, which takes a list of mining pool FQDNs and ports used
for mining by each pool. Firstly, FQDNs are resolved to IP addresses (both IPv4 and IPv6).
Pairs containing all combinations of the pool’s IP addresses and ports are then generated by

1www.xmrig.com
2www.wireshark.org

www.xmrig.com
www.wireshark.org

Traffic capture on CESNET 19

{
"id":1,
"jsonrpc":"2.0" ,
"method":"login" ,
"params": {

"login":"45pw...Ldc"
}

}

Code listing 2 Stratum request used in active probing, value of login is shortened

RESOLVE FQDNs TO IP
ADDRESSES

MINING POOL FQDNs
AND PORTS

VERIFY THAT (IP, PORT) IS A
MINING POOL

CREATE FILE WITH
VERIFIED PAIRS

Figure 2.1 Scheme of the Python script for rule generation

the Cartesian product (shown in the equation equation 2.1). Active probing is then used for
verification that there really is an up and running mining pool on IP:port. Stratum request
(shown on listing 2) is sent and obtained response is parsed as a JSON. However, it is possible
for a server to return JSON even without being a mining pool, so we logged all the responses
and reviewed them manually. Because no errors were detected and all successfully parsed JSONs
contained Stratum, we automated this process so the rules are generated without the need of
manual review. If a server from the input list returned JSON for a Stratum request, we considered
this enough for the server to be a mining pool. The final stage writes verified pairs to a file. This
file has one pair per line, with the following structure: IP port\n. Proposed scheme is shown
on the figure 2.1. As mentioned above, this script was set to run once per day to re-generate the
output file with a CRON job. The structure of the output file is made to be compatible with
another module — blacklist. Our output file was used as a filter for this blacklist module for
traffic capture.

{IP addresses} × {Ports} = {(IP address, Port)} (2.1)

We noticed that ports used by mining pools are usually very similar and therefore we propose
an improvement for our script. Instead of relying on the input mining pool list that no other
ports are used, we can scan the input mining pool list and create a set of all “discovered ports”.
Later, when generating pairs, we may not only combine IP addresses and their corresponding
ports but create a set of pairs with all discovered ports. This way we can scan mining pools for
known ports used for mining and not only for those obtained from the input mining pool list
for a specific pool. However, we decided not to implement this feature because it would be time
consuming and even without this improvement the blacklist was capturing a sufficient amount
of miners’ traffic. Moreover, we would scan ports we know very little about and we could be
marked as a scanner (described above).

As the opposite class of traffic (non-miner) we decided to use the traffic from one of the CES-
NET’s subnets. Traffic on this subnet should contain all the types, such as the traffic generated
by Internet browsing, streaming services, Voice over IP. Moreover, traffic generated by instant
messaging and update checks should be included as well. Therefore, it is a good counter-class
for miners’ communication since it contains the majority of other types and possibly similar
communication as well (discussed in section 2.2).

20 Datasets

/usr/bin/nemea/logger -t -i "f: $FILE" -w " $FILE.csv"

Code listing 3 Bash command used for conversion of a trapcap file into csv

Table 2.1 Datasets overview, Finalized Dataset (FD) is a dataset created by appending all four
datasets together

Name Time range # Miner flows # Other flows # Total flows
01 Dec 14-17 2021 195 646 343 879 539 525
02 Jan 01-17 2022 239 990 472 139 712 129
03 Jan 17-31 2022 142 844 322 399 465 243
04 Feb 01-10 2022 114 757 193 249 308 006
FD — 693 237 1 331 666 2 024 903

2.4 Creating datasets

Traffic captured by the blacklist module and our rules (described in section 2.3) was saved in
the UniRec format. We used NEMEA’s module called logger3 to convert these trapcap files into
CSV files (the exact command is shown on listing 3). Data in files with traffic based on our
rules were labeled as Miner. Data from the CESNET’s subnet (also discussed in section 2.3) was
labeled as Other. Because the non-miner data could be potentially miners’ traffic, we merged IP
addresses and ports from our rules generated over time and ran a check. However, we did not
find any flows that would satisfy the rules for capturing miners’ traffic in the non-miner data.
Unfortunately, there can still be miners’ traffic present in non-miner data because our input
mining pool lists are not complete.

As it was pointed out to us, anomalies can cause wrong measurements and insufficient data in
some of the exported flows, we decided to filter obtained flows before further work. Some flows
represented communication in only one way or had zero bytes or packets. We decided to filter out
these flows because they bear almost no information and therefore are not suitable for detection.
A flow was dropped if one of the following criteria were met:

1. PPI PKT DIRECTIONS contained packets in only one direction (all 1 or all −1)

2. BYTES == 0 or BYTES REV == 0

3. PACKETS == 0 or PACKETS REV == 0

To sum this up, we created four datasets containing both miner and non-miner flows. Each
dataset contains data from approximately half of a month. This is based on when we actually
got the data. Moreover, it may be used to examine if and how miners’ characteristics changed
over time. Overview of created datasets can be found in the table 2.1. Datasets were also
anonymized, meaning that IP addresses were replaced by their hashed variants. Anonymized
datasets are available on the attached medium. In addition, the finalized dataset was created by
appending all the datasets together (used later). This finalized dataset is not available on the
attached medium since it can be easily created from the datasets 01-04.

Summary 21

2.5 Summary
In this chapter, we inspected the current situation of cryptocurrencies and mining pools. We
chose BTC, ETH, XMR and for each cryptocurrency also the top 10 mining pools by the overall
hash rate. We examined locally captured communication of the XMRig miner and created a so-
lution for automatic capturing traffic of miners’ communication on the CESNET network.

Traffic capturing took place from about mid of December 2021 until mid February 2022. Specifi-
cally, miners’ communication was captured during December 14th, 2021 and February 10th, 2022.
The non-miner traffic was captured during December 17th, 2021 and February 10th, 2022. Data
were filtered and labeled. Additionally, we split the data into several datasets based on days based
on dates we got hold of the data. Filtered datasets with anonymized IP addresses and without
IDP CONTENT and IDP CONTENT REV are available on the attached medium.

3www.github.com/CESNET/Nemea-Modules/tree/master/logger

www.github.com/CESNET/Nemea-Modules/tree/master/logger

22 Datasets

Chapter 3

Analysis and design

Traffic captured on the CESNET is thoroughly analyzed in this chapter and the detector’s
complex design is proposed based on this analysis. Then, several modular parts of our detector
are described together with their final combination. One section provides the implementation
details. The implementation process showed that two new modules are needed for the successful
deployment of our module. These modules are also described in this chapter.

3.1 Analysis of traffic from CESNET

We used the finalized dataset (described in the section 2.3) for our experiments. All traffic
was analyzed, however a random sample with a total of 20 000 flows (10 000 flows per class)
was used for plotting figures shown in this section. A complete overview of flow data measured
and exported on CESNET network and therefore features for potential distinguishing of flows is
shown in the table 3.1.

Firstly, we examined the usage of encryption. The figure 3.1 shows how many percentage of
flows of each class bear encrypted communication. It is clear that many miner flows do not use
encryption and therefore are vulnerable to the DPI-based techniques.

Miner Other
LABEL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IS
_U

NE
NC

RY
PT

ED

Figure 3.1 Unencrypted flows in CESNET traffic

23

24 Analysis and design

Table 3.1 Overview of flows’ metrics exported on CESNET network available for detector

Name Description
SRC IP Source IP Address
SRC PORT Source Port
DST IP Destination IP Address
DST PORT Destination Port
PROTOCOL Used protocol on the transport layer
LINK BIT FIELD Exporter ID from where this flow came
TIME FIRST Timestamp of the first packet
TIME LAST Timestamp of the last packet
BYTES Transmitted bytes from source to destination
BYTES REV Transmitted bytes in the opposite direction
PACKETS Transmitted packets from source to destination
PACKETS REV Transmitted packets in the opposite direction
TCP FLAGS TCP flags of the first packet
TCP FLAGS REV TCP flags of the first packet in the opposite direction
IDP CONTENT REV First 100 bytes from destination
IDP CONTENT First 100 bytes from source
TLS JA3 FINGERPRINT JA3 Fingerprint
TLS SNI TLS SNI value
PPI PKT DIRECTIONS Directions of the first 30 packets
PPI PKT FLAGS TCP flags of the first 30 packets
PPI PKT LENGTHS Packet lengths of the first 30 packets

Next, we examined how many bytes and packets are transmitted between a miner and a mining
pool. Numbers of exchanged packets in both directions are very low, as shown on the figures
3.3a and 3.3b. Comparison of transmitted bytes is shown on the figures 3.2a and 3.2b.

Miner Other
LABEL

0

5000

10000

15000

20000

25000

30000

BY
TE

S

(a) Bytes

Miner Other
LABEL

0

10000

20000

30000

40000

50000

60000

70000

BY
TE

S_
RE

V

(b) Bytes in the opposite direction

Figure 3.2 Statistics of exchanged bytes

Moreover, we decided to examine how long is an average packet in a flow and how many seconds
pass between each packet in a flow. As shown on the figure 3.4a, the majority of miner flows
have an average packet length below 600 bytes. As we can see on the figure 3.4b, miner flows
have longer time gaps between packets in general.

We also calculated the ratio of sent and received packets in a flow and looked for any significant
difference. As we can see on the figure 3.5a and figure 3.5b, non-miner flows ratios range through

Design 25

Miner Other
LABEL

0

100

200

300

400

500

PA
CK

ET
S

(a) Packets

Miner Other
LABEL

0

100

200

300

400

500

PA
CK

ET
S_

RE
V

(b) Packets in the opposite direction

Figure 3.3 Statistics of exchanged packets

Miner Other
LABEL

0

200

400

600

800

1000

1200

AV
G_

PK
T_

LE
N

(a) Average length of a packet in flow

Miner Other
LABEL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AV
G_

SE
CS

_B
ET

W
EE

N_
PK

TS

(b) Average seconds between packets in flow

Figure 3.4 Packet characteristics

the whole spectrum. On the other hand, miner flows have more received packets. The graphs
showing sent and received packet ratios of miner flows look like expected, based on the Stratum
specification.

Data showed on the figure 3.6 also confirmed that miner flows have packets in a flow with TCP
PUSH flag set is high, from 70% and more. We also calculated and inspected ratios of other
TCP flags such as ACK, FIN or RST. However, we later determined that these ratios bear very
little information which could be used to distinguish miner flows.

Lastly, we calculated the overall flow durations, shown on the figure 3.7. Most miner flows are
either below 50 seconds long or more than 300 seconds long. On the other hand, non-miner flows
have more equal scatter. Overall duration is based on the flow start and end times and not on
the actual length of a mining session. Therefore, active and passive timeouts can affect these
values.

3.2 Design
Our initial thought was to use several support detectors for classifying a flow as the miner. We
decided to use indicators from different sources and then combine them together to get the final
prediction. This idea was based on the (heterogeneous) ensemble ML where several classifiers
are used when making predictions. The overall prediction is obtained by a combination of the

26 Analysis and design

Miner Other
LABEL

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
RE

CV
_P

ER
CE

NT
AG

E

(a) Ratios of received packets in flow

Miner Other
LABEL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SE
NT

_P
ER

CE
NT

AG
E

(b) Ratios of sent packets in flow

Figure 3.5 Ratios of received and sent packets in flows

Miner Other
LABEL

0.5

0.6

0.7

0.8

0.9

1.0

PS
H_

RA
TI

O

Figure 3.6 Ratios of TCP PUSH flag in flows

base classifiers’ results which is more robust. The number of used models compensates for errors
of every single one of them if they would be used alone.

We decided to use ML over the basic flow’s characteristics that can be calculated for any flow
— both encrypted and unencrypted. The advantage of this approach is that it can be used for
processing any flow but can produce a lot of false predictions.

Since a large percentage of flows were unencrypted, we explored the possibilities of Stratum
detection. CESNET exports the first 100 bytes from each direction, therefore 200 bytes are
available for each flow. This detection is however only available for unencrypted flows. On the
other hand, detection of Stratum will provide results with a very strong degree of belief.

To provide a source also for the encrypted flows, we decided to use the SNI extension of the
TLS protocol, which is available in the CESNET’s setup. We can use the TLS SNI to detect
suspicious keywords in the hostnames. The disadvantage of this approach is that the TLS SNI
value is only present in the TLS handshake and thus during the initiation of the encrypted
connection. Therefore, if there is a miner with a long-lived connection using the TLS, only the
first flow will have the TLS SNI set. Following flows (created by timeout values of a network
probe) will have the TLS SNI empty.

These three support classifiers are combined together by the Meta classifier. Firstly, the Stratum
detector is invoked. If Stratum is successfully detected, flow is marked as miner right away since
this is a very trustworthy indicator. Otherwise, the Meta classifier continues the process. ML
classifier is invoked to get the probability of flow being a miner. Then, if TLS SNI is empty, the
Meta classifier bases its decision only on the ML classifier. Otherwise, the TLS SNI classifier is

ML classifier 27

Miner Other
LABEL

0

50

100

150

200

250

300

350

OV
ER

AL
L_

DU
RA

TI
ON

_IN
_S

EC
S

Figure 3.7 Overall flows duration

invoked to obtain the TLS SNI score. Probability from the ML classifier is combined together with
the TLS SNI score for the final prediction. Our proposed scheme is shown on the figure 3.8.

STRATUM DETECTOR

TLS SNI CLASSIFIER

ML CLASSIFIER

META CLASSIFIER
FLOW PREDICTION

Figure 3.8 High-level concept of the Meta classifier

Initially, we also proposed to use DNS as a support classifier. We would track IP addresses from
flows generated by the DNS requests. However, DNS requests might be encrypted since DNS
over TLS or HTTPS (section 1.1.2) can be used. Moreover, there is no guarantee that the source
IP address of a DNS request corresponds to a machine that originated the DNS request. A client
usually sends a request to a local DNS server, which communicates with other DNS servers to
get the answer, which is then returned to the client. Due to this, we repudiated the DNS as the
potential indicator.

3.3 ML classifier
The first classifier is based on the ML’s ability to predict class or class probability for previously
unseen data. At first, we experimented with AdaBoost (with underlying decision tree), Decision
tree, Logistic Regression and KNN. We used GridSearchCV1 to find best hyperparameters of
each model. We also used multiple input sets of hyperparameters based on several approaches
— define hyperparameters via the constants or percentages of data.

We used BYTES, BYTES REV, PACKETS and PACKETS REV as features since miner flows
are long-lasting and small amount of data is transmitted. We also calculated new statistics and
then used them as features. SENT PERCENTAGE and RECV PERCENTAGE features are
used to as ratios of transmitted data in each direction. The feature IS REQUEST RESPONSE
is true if both rations are equal to 50%. Otherwise it is set to false. The average number
of seconds between packets in a flow is represented by AVG SECS BETWEEN PKTS. Flow’s
overall direction in seconds is represented by OVERALL DURATION IN SECS. AVG PKT LEN

1www.scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

www.scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

28 Analysis and design

Table 3.2 Overview of selected features for ML models

Feature name Source Description
BYTES Flow Number of bytes from src
BYTES REV Flow Number of bytes from dst
PACKETS Flow Number of packets from src
PACKETS REV Flow Number of packets from dst
SENT PERCENTAGE Calculated Ratio of packets from src
RECV PERCENTAGE Calculated Ratio of packets from dst
IS REQUEST RESPONSE Calculated True/False if sent packets are balanced
AVG PKT LEN Calculated Average length of a packet
AVG SECS BETWEEN PKTS Calculated Average time seconds between packets
OVERALL DURATION IN SECS Calculated Overall flow duration
PSH RATIO Calculated Ratio of packets with PUSH flag set

Table 3.3 Hyperparameters of the best Random forest model

Hyperparameter Value
Criterion gini
Max depth 10
Max features sqrt
Min samples leaf 2
Min samples split 5
Estimators 100

represents the average packet length in flow and PSH RATIO is the ratio of packets in flow that
had TCP PUSH flag set. Overview of selected features is shown in the table 3.2.

Decision tree achieved sufficient accuracy of 99.50% on both training and evaluation datasets
and it also outperformed other models. Moreover, Decision trees are simple and explainable
ML models, thus were selected for further tuning. Together with the Decision tree, we also
experimented with Random forest since it is more robust and achieves better performance than
a single decision tree. When finding hyperparameters, we used datasets 01 and 02. However,
evaluation and model selection is based on all four datasets. Hyperparameters of the best Random
forest model are shown on table 3.3, results on table 4.1.

3.4 Stratum detector
Our next detector is based on the pattern matching DPI technique and inspects packets’ contents.
Initially, we designed this detector as shown on the figure 3.9. Detector processes each value of the
IDP CONTENT and IDP CONTENT REV independently. Firstly, the percentage of printable
characters is calculated. Stratum detection is done if and only this percentage is greater than
90%, meaning that a flow bears unencrypted communication. A flow is marked as a miner if at
least one of the values contains Stratum.

Ipfixprobe2 deployed in the CESNET monitoring infrastructure exports first 100 bytes from each
direction for each flow, so we decided to look for typical Stratum strings in these bytes. It is
important that only parts of the Stratum strings are available and may look like invalid JSON.
Therefore, it is impossible to use a JSON parser. Moreover, JSON carrying Stratum request
(and notification) has different keys than Stratum response. We propose two groups of keywords

2www.github.com/CESNET/ipfixprobe

www.github.com/CESNET/ipfixprobe

Stratum detector 29

COUNT PRINTABLE
CHARACTES

STRATUM
DETECTION

BYTE DECODER
IDP_CONTENT IDP_CONTENT_REV

MARK AS
MINER

PRINTABLE
CHARS > 90%

Stratum

No Stratum

Yes

No

COUNT PRINTABLE
CHARACTES

PRINTABLE
CHARS > 90%

STRATUM
DETECTION

No Stratum

Stratum

No

Yes

AT LEAST
ONE CONTAINS

STRATUM?

MARK AS
NON-MINER

Yes No

Flow

Figure 3.9 Initial design of the Stratum detector

for Regex matching of each of the types, based on the Stratum specification [28] and our own
observations in the captured data. We also match the enclosing quotes and colon to ensure it is
part of a JSON structure and not the regular text.

Regex patterns for Stratum request and notification:

1. "method"\s?: — Stratum specification

2. "params"\s?: — Stratum specification

3. "jsonrpc"\s?:"2.0" — Our observations

4. "worker"\s?: — Our observations

5. "mining\.set" — Our observations

6. "mining\.not" — Our observations

Regex patterns for Stratum response:

1. "id"\s?:

2. "result"\s?:

3. "error"\s?:

The Regex rule for matching “id” in Stratum response produced a lot of false positives. After
inspection, we discovered that all three matched strings are present. Therefore we decided
that all three keywords have to be matched. The proposed Regex pattern matches three or more
subgroups and the presence of all three keywords is checked afterward directly in the code.

We were able to match all flows containing Stratum in our datasets with the Regex patterns
above. For optimizations, we created one compiled Regex for each group so that the Regex mod-
ule will run only twice instead of nine times. Used patterns are on listing 4 and listing 5.

30 Analysis and design

("(jsonrpc|method|worker)":\s?")|(params":|mining\.(set|not))

Code listing 4 Complete Regex pattern for matching Stratum request and notification

("(("(?P<I>id)|(?P<R>result)|(?P<E>error)":\s?).*){3,}

Code listing 5 Complete Regex pattern for matching Stratum response

3.5 TLS SNI Classifier
TLS SNI classifier inspects the TLS SNI value. Since that SNI contains a website’s hostname or
domain name, we can use it to detect suspicious keywords in that hostname. We noticed that
many mining pool hostnames contain words associated with mining, such as ethermine.org or
beepool.com. Moreover, they often use subdomains for mining of a specific cryptocurrency and
setting up servers for different countries or continents, such as xmr-eu1.nanopool.org or eth-
us-west.flexpool.io. Based on these observations, we designed our classifier to look for keywords
from two groups — cryptocurrency names and mining keywords.

The first group of keywords is made out of short names of cryptocurrencies. Originally, we were
matching btc, eth and xmr, case-insensitively. But since these short names are made from three
letters, it was producing some false positives. To keep the false-positive rate as low as possible, we
once again inspected the TLS SNI values and discovered that short names are usually pre-fixed
or post-fixed by either “.” or “-”. Based on this discovery, we made several rules which transform
each short name into the four enhanced patterns. Classifier takes the list of the short names on
input and creates a new list of enhanced patterns for later matching. Each enhancement rule
takes a short name as an input (marked as $NAME) and produces a new pattern:

-$NAME

$NAME-

.$NAME

$NAME.

The second keywords group contains simple words indicating the mining process. Selected key-
words are based on the values found in the TLS SNI in the captured data from the CESNET
network. Matching is done case-insensitively. Selected keywords are:

Pool

Mine

Mining

Finally, results from both parts are combined together. For a group to be matched, at least one
keyword from that group has to be present in the TLS SNI value. For a full match, both groups
have to be matched. For a partial match, at least one group has to be matched. TLS SNI score
is then assigned based on the following rules:

score = 1.0, if full match
score = 0.5, if partial match
score = 0.0, if no match

Meta classifier 31

ENHANCED CRYPTO
NAMES

KEYWORDS

MATCHER
AT LEAT ONE MATCH

NEEDED

MATCHER
AT LEAT ONE MATCH

NEEDED

TLS SNI

COMBINATOR TLS SNI SCORE

Figure 3.10 Design of TLS SNI classifier

pattern = re2.compile("|".join(keywords))

Code listing 6 Concatenation of keywords to create one Regex pattern

We only match a few short crypto names based on our data and even fewer keywords for mining
pool hostnames. Potentially, a lot of false negatives can be produced. For example, pools mining
crypto which is not in the list or a pool that does not have any reference to a mining process in its
name. However, many cryptocurrencies are mined and to include all of them would be impossible.
To keep our lists short and simple, we decided to keep only the names of cryptocurrencies that
were actually present in our datasets, hence are mined in the CESNET network — BTC, ETH,
XMR and RVN (Ravencoin). Since the TLS SNI classifier takes both keyword lists as an input,
anyone can create a list that suits his needs. Many lists can also be found online.

As mentioned above, the TLS SNI classifier creates an enhanced list of crypto names for matching.
Moreover, it generates one Regex pattern for each group by concatenating keywords by the OR
operator, shown on listing 6.

3.6 Meta classifier
Meta classifier connects together support classifiers and uses their outputs to make the final
prediction. Since detection of a mining protocol creates a very strong belief that source flow is
a miner, successful detection of Stratum results in the Meta classifier marking this flow as the
miner right away. Otherwise, we calculate features needed by ML and predict the probability
of the flow being a miner. If the TLS SNI is not present, we compare this probability with the
ML threshold to decide if the flow is a miner. If TLS SNI is present, we pass it to the TLS SNI
classifier to obtain the TLS SNI score. TLS SNI score and ML probability are combined together
via the DST (described in section 1.4) and compared with the DST threshold to make a decision.
Schema of the Meta classifier is shown on figure 3.11.

We also considered the majority voting when combining support classifiers’ decisions. However,
the Stratum detector cannot provide a true prediction if a flow represents an encrypted connec-
tion. TLS SNI value is only sent during the initiation of the encrypted connection, therefore
many flows representing the same connection initiated previously will have the TLS SNI empty.
Moreover, the Stratum detector and TLS SNI classifier are mutually exclusive — a flow can
bear unencrypted data or have a TLS SNI value, but not both at the same time. Therefore, the

32 Analysis and design

Stratum Detector
Flow Stratum

Detected?

Mark as MINER

Yes

Features Generator

No

TLS SNI
present? TLS SNI Classifier

DST

ML Classifier

Proba
> DST TresholdDrop flow

ML Classifier

Proba
>= ML Treshold

Enhaced Flow

YesNo

Proba

ML Proba

TLS SNI Score

Proba

YesNo

NoYes

Figure 3.11 Schema of the Meta classifier

majority vote would be reduced to either ML and Stratum, or ML and TLS SNI. Since combining
Stratum and ML with both DST and majority (logical and) only reduced the number of correct
predictions, results of the Stratum detector are not combined but used directly. We decided to
use the DST for a combination of the ML probability and TLS SNI score. DST allows us to
express the trustworthiness of data sources numerically. On the other hand, logical and sees
combining values as equals.

Initially, we designed Meta classifier to use the DST for combining results from all support
classifiers. Moreover, Stratum and TLS SNI classifiers also provided the credibility values apart
from scores. Credibility values were used to express belief in the corresponding classifier’s output.
For example, if the TLS SNI classifier detected a partial match and set the TLS SNI score to 0.5,
credibility was set to 0.6 to express incompleteness of the keywords lists. These values were set
experimentally. The credibility of the Stratum classifier was affected by a number of printable
characters. The payload was considered text if the percentage of the printable characters was
more than 90%. See complete overview in the appendix D. However, we later determined that
this approach does not improve overall results.

TLS SNI score and ML probability are used to define a mass function for each value. M argument
is used for miners, O represents others (non-miners). Definitions are shown in equations 3.1 and
3.2. These two mass functions are then conjunctively combined together and transformation is

Implementation 33

pign = mlBpa.combine_conjunctive(tlsSniBpa).pignistic()

Code listing 7 Conjuctive combination of mass functions to get pignistic function

done to get the resulting pignistic function, shown on listing 7.

bpaML(M) = ML probability (3.1)
bpaML(O) = 1 − ML probability

bpaSNI(M) = TLS SNI SCORE (3.2)
bpaSNI(O) = 1 − TLS SNI SCORE

The number of false positives and negatives is dependent on the values of DST and ML thresholds.
To find the optimal DST threshold, we calculated pignistic functions to get miner probabilities
from DST. Initially, we set the DST threshold to the value of 1% quantile from each of our
datasets. ML threshold was set to 0.5. During the discussion with the thesis’s supervisor, we
agreed that a large number of FP alerts could be counterproductive and we decided to look
for the thresholds which would generate the lowest possible number of FP. We found the new
DST threshold — 0.4419. Meta classifier still generated several FPs, but we determined that
this was caused by the ML threshold. As described before, a number of false-positive alerts
may be counterproductive — network administrators might stop paying attention to such alerts.
To overcome this situation, the ML threshold was set to 0.9970. We also decided that miner
detection will only take place if a flow has more than seven packets in each direction.

3.7 Implementation
We implemented the approach described above in a new NEMEA module called miner detector,
written in Python. The first version was processing one flow at the time. Individual calls of
Scikit-learn library3 caused this implementation to be very slow, around 260 flows per second.
Therefore, we used a buffer to store flows until their count reached a certain number (can be set
by an input parameter, default is 100 000) and then we processed the flows in bulk. Moreover,
we used Cython4 to increase the overall performance and re25 library for Regex matching. This
improved the performance, but processed flows per second were still low. We also discovered an
unnecessary parsing of datetimes when generating features. Fix of feature generation significantly
improved performance.

It is possible that the ML model will worsen in time or that size of the buffer will not be
suitable. Our module allows to set the ML model’s input path, buffer size and IFC interfaces via
its arguments for users to customize it. Currently, keywords used in the TLS SNI classifier are
hardcoded and therefore it is only possible to change them in code. However, it can be easily
fixed and we plan to add this functionality in the near future.

We also discovered that the calculation of the percentage of printable characters in IDP CON-
TENT and IDP CONTENT REV does not produce better predictions. Our idea was that if a
flow bear unencrypted communication and Stratum were not detected, we could mark it as a
non-miner flow without running any additional support classifiers. However, it was only slowing

3www.scikit-learn.org
4www.cython.org/
5www.github.com/google/re2

www.scikit-learn.org
www.cython.org/
www.github.com/google/re2

34 Analysis and design

MINER
DETECTOR

Flows MINER
AGGREGATOR

Miner Flows
IDEA REPORTER

Alerts IDEA Alerts

Figure 3.12 Proposed deployment architecture of our miner detector

down the process. Therefore, we removed this part and the Stratum detector does the detection
directly.

During implementation, we also found out that raw outputs of the miner detector (flows marked
as miners) can not be used for reporting purposes. As mentioned earlier, one connection can
be represented by several flows over time, especially when this connection is long-lasting. Many
raw outputs can therefore represent one active miner. Moreover, UniRec format (described in
subsection 1.2.4) is efficient when storing and transmitting data but inconvenient for reporting
purposes since it is an unreadable binary protocol. CESNET uses Warden6 — system for sharing
information about detected events and threats, and Mentat7 as the web interface for easy access
and visualization of information from Warden. The proposed architecture for deploying the
miner detector module is shown on the figure 3.12. Miner aggregator is a module for aggregating
raw outputs of the miner detector, which generates alerts after certain conditions are met. IDEA
reporter is a module that uses information from miner aggregator alerts to craft messages for
the Warden system. Both modules are described in the following subsections.

3.7.1 Miner aggregator
Miner aggregator is a module designed to collect raw outputs of the miner detector, aggregate
them and send an alert to its output after certain conditions are met. A flow marked as a miner
is received from the miner detector, a flow key is calculated and either a new record is added to
the flow cache or the existing one is updated. A flow key is calculated as SHA-256 hash from
source and destination IP addresses and ports. Each record in the cache stores the overall counts
of transmitted packets, bytes and also reasons why flows were marked as the miners. Possible
values are STRATUM, when Stratum was matched, DST, if TLS SNI was present and the result
was obtained by DST combination of TLS SNI score and ML probability, or ML if only the ML
probability was used.

Cache record is exported from the flow cache and sent to the output if one of the two conditions
is met. The first condition has a similar purpose as the active timeout in flow exporting. It
is meant for exporting records with a large number of flows — after a certain maximum is
reached, the record is exported. We set this maximum to 5, mainly for debugging purposes.
The second condition helps with records that would not reach the maximum threshold and it is
similar to passive timeout. After a certain time of inactivity, record is exported from the cache.
Experimentally, we set this timeout to 30 minutes. Both timeouts can be set via the module’s
arguments. When a record is exported, it is deleted from the cache.

Miner aggregator is implemented again as the NEMEA module, which uses UniRec format on
its input and output. When a cache record is exported, the output UniRec message contains
total bytes and packets and IP addresses. It also contains the aggregation window (time window
during which base flows were collected) and detection reason which dominated.

6www.warden.cesnet.cz/en/about_project
7www.mentat.cesnet.cz

www.warden.cesnet.cz/en/about_project
www.mentat.cesnet.cz

Implementation 35

Figure 3.13 Screenshot of IDEA alert with a potential miner in the Mentat web interface

3.7.2 IDEA reporter
IDEA reporter is a very simple module, which was created from the existing template8. After an
alert from miner aggregator is received, a message is crafted by filling data into the predefined
JSON structure (called IDEA format9). The message is then passed on to the Warden system
and is available in the Mentat web interface for manual inspection by the network administrators.
IDEA message contains IP addresses, source detector, type of detection and more. It also provides
communication statistics, such as bytes, packets and aggregation windows which are described
in the subsection 3.7.1. An alert in the Mentat web interface created by our setup is shown on
the figure 3.13.

8www.github.com/CESNET/Nemea-Modules/blob/master/report2idea/template.py
9www.idea.cesnet.cz/en/index

www.github.com/CESNET/Nemea-Modules/blob/master/report2idea/template.py
www.idea.cesnet.cz/en/index

36 Analysis and design

Chapter 4

Evaluation

This chapter describes the back checking of how our datasets are labeled based on the imple-
mented detector. The quality of created datasets is evaluated. Furthermore, several performance
metrics used for the final evaluation are also described. Details from the deployment of our de-
tector and its architecture on the CESNET2 network are also provided.

4.1 Datasets’ quality
Since everyone can create their own cryptocurrency or a mining pool server, it is impossible to
create a blacklist that would contain every single one of them. Therefore, there is a very high
possibility that our dataset representing the non-miner class contains flows generated by miners.
To address this issue, we used our support classifiers — Stratum detector and TLS SNI classifier
— to look for either flows containing Stratum or flows where TLS SNI contained suspicious
keywords and after manual review, we fixed several labels. But even after this there is still a
chance of mislabels in our datasets.

In the first step, we generated predictions with the Stratum detector and then filtered only non-
miner flows. Then, we manually reviewed the results, but unfortunately there were no flows
with these characteristics. In the second step, we used the TLS SNI classifier to find flows with
suspicious hosts in the TLS SNI field. This produced several hundred flows that turned out to
be mislabeled. We fixed labels of around 800 flows and marked them as miners. However, we
still cannot be sure if all non-miner flows have true labels.

4.1.1 Permutation tests
Permutation tests are used for the evaluation of datasets’ quality [82]. As described by Camacho
et al. [82], permutation tests can be performed in various ways but we will mainly focus on the
permutation of labels. This is because label permutation is more flexible and also other variants
of permutation tests would require larger computational effort [82]. By random permutations of
labels we can test if there is any correlation between the labels and features in a dataset.

As also described in [82], we firstly train several ML models and obtain a pool of performance
measures for the tested dataset. Then, we apply label permutation to percentages of data (ranges
from 1% to 100%). After that, we measure the loss of ML models’ performance. Finally, P -values
are calculated by the formula shown on 4.1, where F1 is the F1-Score of real data and F1∗ is
F1-Score of permutated data. Other performance metrics may be used as well. Low P -values

37

38 Evaluation

show a correlation between features and labels and therefore infer the good quality of data in
the dataset.

P = (No. of (F1∗ ≥ F1) + 1)/(Total No. of F1∗ + 1) (4.1)

Because even permutation tests based on the label permutation are demanding for time and
computational resources, we decided to only run these tests on samples of our datasets. We used
following ML models for obtaining the performance pool: k-nearest neighbors (KNN), Support
Vector Machine (SVN), Decision tree (DT), Random forest (RF), AdaBoost (AB), XGBoost
(XGB) and Multi-layer perceptron (MLP).

We performed permutation tests of labels under the supervision of Ing. Dominik Soukup. Used
samples contained randomly selected 5000 flows per class, totalling 10 000 flows per dataset. The
number of permutations was set to 200 and permutations were applied to 50%, 25%, 10%, 5%
and 1% of the data. Performance drops of all ML models were around 30% for all datasets.
AdaBoost model scored P -value of 0.1542 during the 1% permutation of labels from dataset 04.
We suspect that this might be caused by the inept permutation of a small amount of labels.
However, all other P -values were below 0.05. In conclusion, permutation tests showed a good
overall quality of all datasets. See appendix B for performance drops figures and tables with
P -values.

4.2 Performance metrics
One of the basic principles when evaluating the ML models is a group of true and false positives
and negatives. As defined in [83]:

1. True positive (TP): model correctly predicts positive class

2. False positive (FP): model incorrectly predicts positive class

3. False negative (FN): model incorrectly predicts negative class

4. True negative (TN): model correctly predicts negative class

Many other evaluation techniques use true/false positives/negatives. Raschka [84] defined Con-
fusion matrix for binary prediction as a 2 × 2 matrix with displaying numbers of “actual” and
“predicted”. Showed numbers can be both absolute or relative. Accuracy (ACC) metric shows
the number of correct predictions [84]. This metric is calculated as the sum of correct predictions
divided by the total number of predictions.

ACC = TP + TN

TP + FP + FN + TN

As also described by Raschka [84], Precision (PRE) and Recall (REC) are metrics that are more
commonly used and are based on the true and false-positive rates. Recall is also called Sensitivity
and Precision is called Specificity. The F1-Score combines both Precision and Recall.

PRE = TP

TP + FP

REC = TP

FN + TP

F1 = 2 · PRE · REC

PRE + REC

Performance of the miner detector 39

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

False Positive Rate
(FPR)

ROC

AUC

Figure 4.1 ROC AUC metrics example

Table 4.1 Performance of the chosen Random forest model

Dataset Purpose ROC AUC Accuracy Precision Recall F1-Score
01 Verification 99.11% 99.29% 99.61% 98.44% 99.02%
02 Train, Test 99.14% 99.27% 99.08% 98.74% 98.91%
03 Verification 97.47% 98.12% 98.07% 95.78% 96.91%
04 Verification 97.37% 97.77% 98.22% 95.77% 96.98%

Receiver Operator Characteristic (ROC) graphs, defined in [84], are used for visualization of
models’ performance. Models with performance below ROC’s diagonal are considered to be
worse than random guessing. A perfect classifier has no false predictions and would be located in
the top left corner of the ROC graph. Area Under the (ROC) curve, called AUC, can be calculated
and used to express the model’s performance. Example is shown on the figure 4.1.

4.3 Performance of the miner detector
When evaluating ML models’ performance, we used several metrics described in section 4.2.
Random forest turned out to be the best option and achieved F1-Score more than 96.5% on
each dataset. It was trained on dataset 02, data captured in the first half of January, 2022. The
evaluation was done on all data from each dataset and ROC AUC, F1-Score, Recall, Precision and
Accuracy were used, shown in the table 4.1. Hyperparameters of other models’ configurations and
their performance are shown in the appendix C. When selecting the best model, we considered
all metrics, but F1-Score was considered the most important one.

To evaluate implemented prototype of the miner detector, we merged all the datasets together
to get one finalized dataset. The detector was then used to detect miner flows in this finalized
dataset and metrics were calculated. The evaluation was performed with all flows from the
finalized datasets, the confusion matrix is shown on the figure 4.2a. During the second evaluation,
the detector only processed flows that have more than seven packets in each direction, shown
on the figure 4.2b. Our detector achieved an accuracy of 96.3772% when all flows were analyzed
and 95.882% when the pre-filter was in place. It may seem that the pre-filter worsened the

40 Evaluation

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

621 201
30.6781%

1 323
0.0653%

72 036
3.5575%

1 330 343
65.6991%

(a) Confusion matrix when all data were used

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

519 837
33.544%

137
0.0088%

63 662
4.108%

966 082
62.3392%

(b) Confusion matrix when the pre-filter was in place

Figure 4.2 Confusion matrices of miner detector (the Meta classifier)

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

567 138
100.0%

0
0.0%

0
0.0%

0
0.0%

(a) CM of the Stratum detector

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

937
0.2098%

1243
0.2783%

1 165
0.2609%

443 262
99.251%

(b) CM of the DST

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

53 126
5.254%

80
0.0079%

70 871
7.0089%

887 081
87.7292%

(c) CM of the ML classifier

Figure 4.3 Confusion matrices of support classifiers when all data were used

accuracy of our detector, however it significantly lowered the number of false positives. This is
a very desirable effect for the high-speed networks because large number of false-positive alerts
would have to be manually reviewed by network administrators.

Moreover, we tracked how many flows were processed by support classifiers and their results.
Statistics of the Stratum detector, DST combination of the TLS SNI classifier and the ML
classifier, and only by the ML classifier are shown on the figure 4.3 and figure 4.4.

Lastly, we evaluated the speed of the detector. The detector achieved total speed of around
30 000 flows per second when run on our laptop in WSL2 with Intel i5-7200, 2.5 GHz. Default
buffer size of 100 000 flows was used. However, it was able to process 41 500 flows per second
when tested on AMD Ryzen 3700X, 3.59 GHz.

Deployment on CESNET 41

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

466 558
100.0%

0
0.0%

0
0.0%

0
0.0%

(a) CM of the Stratum detector

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

137
0.034%

57
0.0142%

1 153
0.2865%

401 070
99.6653%

(b) CM of the DST

Miner Other
Actual

M
in

er
Ot

he
r

Pr
ed

ict
ed

53 126
7.8043%

80
0.0118%

62 509
9.1827%

565 012
83.0013%

(c) CM of the ML classifier

Figure 4.4 Confusion matrices of support classifiers when the pre-filter was in place

4.4 Deployment on CESNET
Three implemented modules — miner detector, miner aggregator and reporter were deployed on
the national CESNET network on 01.04.2022. Since that time, almost 100 000 alerts have been
generated and only one false positive has been found so far. To our surprise, most of the alerts
were based on Stratum detection, but around 300 alerts were based on the DST (TLS SNI and
ML). However, a different version of the Scikit-learn library was installed on the server where the
detector runs. This could potentially cause an incorrect load of the ML module from the file and
cause the ML classifier to work incorrectly. We installed the correct version of the library, but it
did not help. Initially, the ML threshold was set to 1.0, but we later discovered that this value
is very strict and caused that no flows were marked as miners by this classifier. ML threshold
was therefore set to 0.997 and eventually the ML classifier started producing results as well. The
detector is now deployed on the national CESNET2 network and is successfully detecting miner
flows. Without a doubt, a lot of miner flows remain undetected but at the same time network
administrators are not drowned in the false alerts.

42 Evaluation

Conclusion

The main goal of this thesis was to design an algorithm for the automatic detection of cryp-
tominers. Since cryptomining may be performed by cybercriminals for their own enrichment in
an abusive way, it is essential to be able to detect it. The main goal also included developing a
software prototype capable of processing real high-speed network traffic using the NEMEA sys-
tem. Previous attempts were able to detect miner communication, however this thesis explored
real high-speed networks, which has not been studied very thoroughly in the past.

We created the collection of datasets containing miner and non-miner traffic and also a tool that
is able to adapt to the changing nature of mining pools structure and automatically capture
miner traffic over time. We analyzed this traffic and proposed three possible ways of miner
detection, based on the Stratum mining protocol for unencrypted traffic, suspicious hostnames
in the TLS SNI and ML for encrypted traffic. These three detectors were used together to create
a highly accurate ensemble detector.

Moreover, we implemented our ensemble detector in Python with an emphasis on efficiency.
At this point, our implementation is deployed in the CESNET infrastructure protecting nation
network CESNET2 with half a million users. It also protects the national computational grid
MetaCentrum against abuse. More than 100 000 alerts were generated with a minimum of false
positives.

In the future, we plan to make the developed detector more customizable for users, let them set
the keywords to match in the TLS SNI and also to automatically re-train the ML model used
by the ML classifier. It is expected that Stratum V2 will become a new standard in mining
protocols. Since we mainly focused on Stratum V1, a possible extension of our work is to focus
on Stratum V2 and add another support classifier for this protocol.

43

44 Conclusion

Appendix A

Selected mining pools

This appendix provides overview of selected mining pools and their extracted mining protocols
and ports used for mining. Table A.1 holds information about BTC mining pools, table A.2 for
ETH and table table A.3 for XMR. Value “Stratum” in the column Protocol means that the Stra-
tum was directly specified as the used mining protocol. Value “Stratum?” means that we found
Stratum in the “Help” section or sections with example configurations of mining software.

Table A.1 Selected mining pools for BTC

No. Pool Protocol Ports
1. www.f2pool.com Stratum 25, 3333, 1314
2. www.v3.antpool.com Stratum 25, 443, 3333
3. www.viabtc.com Stratum 25, 443, 3333
4. www.poolin.com Stratum 443, 700, 1883
5. www.foundrydigital.com — —
6. www.pool.btc.com Stratum 25, 443, 1800
7. www.pool.binance.com Stratum 443, 1800, 3333, 8888
8. www.slushpool.com Stratum 3333
9. www.hpt.com — —
10. www.marathondh.com — —

45

www.f2pool.com
www.v3.antpool.com
www.viabtc.com
www.poolin.com
www.foundrydigital.com
www.pool.btc.com
www.pool.binance.com
www.slushpool.com
www.hpt.com
www.marathondh.com

46 Selected mining pools

Table A.2 Selected mining pools for ETH

No. Pool Protocol Ports
1. www.ethermine.org Stratum 4444, 5555, 14444
2. www.f2pool.com Stratum 6688
3. www.hiveon.net Stratum 4444, 14444, 24443
4. www.eth.nanopool.org Stratum, Getwork 8888, 9433, 9999
5. www.beepool.com/coindetail/eth Stratum 9630, 9531, 9532
6. www.eth.2miners.com Stratum? 2020, 12020
7. www.flexpool.io Stratum 4444, 5555, 14444
8. www.pool.binance.com Stratum 25, 443, 1800, 3333, 8888
9. www.ethereum.miningpoolhub.com Stratum 20535
10. www.v3.antpool.com Stratum 25, 443, 8008

Table A.3 Selected mining pools for XMR

No. Pool Protocol Ports
1. www.minexmr.com Stratum? 443, 3333, 4444
2. www.supportxmr.com Stratum? 80, 443, 8080, 3333, 5555, 7777, 9999
3. www.xmr.nanopool.org Stratum 14443, 14444
4. www.f2pool.com Stratum 13531
5. www.c3pool.com Stratum 80, 443, 13333, 15555, 17777, 23333
6. www.web.xmrpool.eu Stratum 443, 3333, 5555, 7777, 9999
7. www.hashcity.org Stratum 2321, 3100, 4444, 4445
8. www.xmr.2miners.com Stratum 2222, 3333, 12222, 13333
9. www.p2pool.io Stratum 18080, 37889
10. www.monero.hashvault.pro Stratum 80, 443, 3333, 5555, 7777, 8888

www.ethermine.org
www.f2pool.com
www.hiveon.net
www.eth.nanopool.org
www.beepool.com/coindetail/eth
www.eth.2miners.com
www.flexpool.io
www.pool.binance.com
www.ethereum.miningpoolhub.com
www.v3.antpool.com
www.minexmr.com
www.supportxmr.com
www.xmr.nanopool.org
www.f2pool.com
www.c3pool.com
www.web.xmrpool.eu
www.hashcity.org
www.xmr.2miners.com
www.p2pool.io
www.monero.hashvault.pro

Appendix B

Permutation test results

This appendix provides detailed results of permutation tests run on our datasets 01-04. Tables
B.1, B.2, B.3 and B.4 show resulting P -values for each dataset. Moreover, figure B.1 shows how
ML models performance dropped after the label permutations.

Table B.1 P -values for dataset 01 from permutation tests with 200 permutations

Model 50% 25% 10% 5% 1%
KNN .0050 .0050 .0050 .0050 .0050
SVM .0050 .0050 .0050 .0050 .0050
DT .0050 .0050 .0050 .0050 .0050
RF .0050 .0050 .0050 .0050 .0050
AB .0050 .0050 .0050 .0050 .0050
XGB .0050 .0050 .0050 .0050 .0050
MLP .0050 .0050 .0050 .0050 .0050

47

48 Permutation test results

Table B.2 P -values for dataset 02 from permutation tests with 200 permutations

Model 50% 25% 10% 5% 1%
KNN .0050 .0050 .0050 .0050 .0050
SVM .0050 .0050 .0050 .0050 .0050
DT .0050 .0050 .0050 .0050 .0050
RF .0050 .0050 .0050 .0050 .0050
AB .0050 .0050 .0050 .0050 .0050
XGB .0050 .0050 .0050 .0050 .0050
MLP .0050 .0050 .0050 .0050 .0398

Table B.3 P -values for dataset 03 from permutation tests with 200 permutations

Model 50% 25% 10% 5% 1%
KNN .0050 .0050 .0050 .0050 .0050
SVM .0050 .0050 .0050 .0050 .0050
DT .0050 .0050 .0050 .0050 .0050
RF .0050 .0050 .0050 .0050 .0050
AB .0050 .0050 .0050 .0050 .0149
XGB .0050 .0050 .0050 .0050 .0050
MLP .0050 .0050 .0050 .0050 .0050

Table B.4 P -values for dataset 04 from permutation tests with 200 permutations

Model 50% 25% 10% 5% 1%
KNN .0050 .0050 .0050 .0050 .0050
SVM .0050 .0050 .0050 .0050 .0050
DT .0050 .0050 .0050 .0050 .0050
RF .0050 .0050 .0050 .0050 .0050
AB .0050 .0050 .0050 .0050 .1542
XGB .0050 .0050 .0050 .0050 .0050
MLP .0050 .0050 .0050 .0050 .0249

49

(a) Performance drops on the dataset 01 (b) Performance drops on the dataset 02

(c) Performance drops on the dataset 03 (d) Performance drops on the dataset 04

Figure B.1 Performance drops of ML models used for permutation testing

50 Permutation test results

Appendix C

ML models’ results

This appendix provides detailed results of remaining ML models tested when looking for a
suitable model. Tables C.1 and C.3 show hyperparameters of Decision tree and Random forest
models, column Name is then used as a key to the tables C.2 and C.4, which show different
performance metrics for each model and dataset. Symbol “*” in the column Dataset means that
corresponding model was trained on this dataset, in tables C.2 and C.4.

Table C.1 Overview of Decision tree models

Name Criterion Max depth Max feat. Min leaf Min split Splitter
DT1 entropy 7 None 0.005 0.01 best
DT2 entropy 6 None 0.005 0.005 best
DT3 entropy 8 log2 0.1 0.15 best
DT4 entropy 6 auto 0.1 0.15 best
DT5 entropy 20 log2 0.1 0.2 best
DT6 gini 6 auto 0.1 0.25 best
DT7 gini 20 None 2 7 best
DT8 entropy None None 2 5 best

51

52 ML models’ results

Table C.2 Overview of Decision tree models’ performance

Name Dataset ROC AUC Accuracy Precision Recall F1-Score
DT1 01∗ 97.26% 97.65% 97.63% 95.84% 96.73%
DT1 02 90.98% 93.09% 94.40% 84.51% 89.18%
DT1 03 92.06% 93.27% 89.18% 88.91% 89.04%
DT1 04 90.28% 91.90% 93.82% 83.87% 88.57%
DT2 01 96.89% 97.35% 97.46% 95.19% 96.31%
DT2 02∗ 95.78% 96.46% 95.75% 93.66% 94.70%
DT2 03 94.70% 95.72% 93.89% 92.06% 92.97%
DT2 04 94.36% 94.95% 94.37% 91.99% 93.16%
DT3 01∗ 90.11% 89.80% 82.50% 91.24% 86.65%
DT3 02 85.04% 85.75% 76.71% 82.88% 79.67%
DT3 03 84.47% 83.83% 68.99% 86.15% 76.62%
DT3 04 82.28% 82.51% 74.33% 81.36% 77.68%
DT4 01 91.35% 93.09% 95.40% 85.03% 89.92%
DT4 02∗ 88.25% 91.06% 92.81% 79.63% 85.72%
DT4 03 91.84% 93.50% 91.01% 87.52% 89.23%
DT4 04 89.58% 91.30% 93.25% 82.74% 87.68%
DT5 01∗ 88.76% 91.47% 97.01% 78.90% 87.02%
DT5 02 84.63% 88.85% 93.75% 71.70% 81.25%
DT5 03 90.72% 92.98% 91.71% 84.84% 88.14%
DT5 04 88.45% 90.68% 94.68% 79.57% 86.47%
DT6 01 91.72% 93.57% 96.93% 84.97% 90.56%
DT6 02∗ 87.49% 90.73% 93.90% 77.54% 84.94%
DT6 03 87.14% 88.98% 81.92% 82.35% 82.14%
DT6 04 87.24% 89.48% 92.40% 78.33% 84.79%
DT7 01∗ 99.75% 99.78% 99.71% 99.67% 99.69%
DT7 02 93.98% 95.76% 98.76% 88.52% 93.36%
DT7 03 98.13% 98.43% 97.52% 97.36% 97.44%
DT7 04 97.81% 98.08% 98.12% 96.73% 97.42%
DT8 01 99.52% 99.60% 99.71% 99.20% 99.45%
DT8 02∗ 99.47% 99.54% 99.36% 99.26% 99.31%
DT8 03 97.36% 98.12% 98.49% 95.36% 96.90%
DT8 04 94.67% 95.71% 97.84% 90.52% 94.04%

Table C.3 Overview of Random forest models

Name Criterion Max depth Max feat. Min leaf Min split Estm.
RF1 entropy 10 sqrt 2 5 50
RF2 gini 10 sqrt 2 5 100
RF3 gini 6 None 10 10 50
RF4 gini 6 log2 10 10 50
RF5 gini 5 None 10 10 50
RF6 gini 5 sqrt 10 10 100

53

Table C.4 Overview of Random forest models’ performance

Name Dataset ROC AUC Accuracy Precision Recall F1-Score
RF1 01∗ 99.68% 99.73% 99.79% 99.47% 99.63%
RF1 02 93.83% 95.68% 98.91% 88.15% 93.22%
RF1 03 96.45% 97.53% 98.22% 93.66% 95.88%
RF1 04 95.14% 95.53% 99.32% 88.66% 93.69%
RF2 01 99.11% 99.29% 99.61% 98.44% 99.02%
RF2 02∗ 99.14% 99.27% 99.08% 98.74% 98.91%
RF2 03 94.47% 98.12% 98.07% 95.78% 96.91%
RF2 04 97.37% 97.77% 98.22% 95.77% 96.98%
RF3 01∗ 98.67% 98.86% 98.91% 97.95% 98.42%
RF3 02 92.53% 94.47% 96.69% 86.56% 91.35%
RF3 03 94.06% 95.52% 94.93% 90.26% 92.54%
RF3 04 91.58% 93.18% 96.11% 85.23% 90.34%
RF4 01 97.83% 98.32% 99.27% 96.06% 97.64%
RF4 02∗ 97.02% 97.71% 98.21% 94.93% 96.54%
RF4 03 94.03% 95.84% 96.91% 89.32% 92.96%
RF4 04 92.01% 93.84% 98.56% 84.77% 91.14%
RF5 01∗ 97.98% 98.26% 98.20% 96.98% 97.58%
RF5 02 92.12% 94.07% 95.86% 86.13% 90.74%
RF5 03 93.47% 95.08% 94.40% 89.28% 91.77%
RF5 04 91.26% 92.98% 96.35% 84.44% 90.00%
RF6 01 97.51% 98.02% 98.85% 95.66% 97.22%
RF6 02∗ 96.40% 97.17% 94.44% 94.06% 95.72%
RF6 03 93.41% 95.15% 95.02% 88.89% 91.86%
RF6 04 91.19% 92.94% 96.41% 84.26% 89.93%

54 ML models’ results

Appendix D

Experimental credibility values

This appendix shows experimental values of Stratum credibility (table D.1) and TLS SNI credi-
bility (table D.2) in the original design of the Stratum detector and the TLS SNI classifier. As
described in chapter 3, credibility values were later removed.

Table D.1 Experimental credibility values for Stratum classifier

Client Payload Printable Server Payload Printable Credibility
Yes Yes 0.9
Yes No 0.6
No Yes 0.6
No No 0.0

Table D.2 Experimental credibility values for TLS SNI classifier

Match Credibility
Full 0.9
Partial 0.6
None 0.0

55

56 Experimental credibility values

Appendix E

User manual

This chapter provides a quick overview of the usage of the two implemented modules — detector
and aggregator. The IDEA reporter module was created from the template. Therefore, we do
not provide a help section in this appendix since needed information is publicly available1.

Miner Detector
==============
usage:

./minerdetector.py [-h] [-m MODEL] [-b BUFFER] [-i I] [-d DST THRESHOLD]
[-t ML THRESHOLD] [-v]

optional arguments:
-h, --help

Show this help message and exit
-m MODEL, --model MODEL

Pickle file with ML model
-b BUFFER, --buffer BUFFER

Flow buffer size
-i I

IFC interfaces for pytrap
-d DST THRESHOLD, --dst-threshold DST THRESHOLD

Threshold for miners’ DST pignistic function [0..1]
-t ML THRESHOLD, --ml-threshold ML THRESHOLD

Threshold for ML proba [0..1]
-v, --verify-mode

Run detector in verification mode, flow labels are required

1www://github.com/CESNET/Nemea-Framework/blob/master/pycommon/report2idea.py

57

www://github.com/CESNET/Nemea-Framework/blob/master/pycommon/report2idea.py

58 User manual

Miner Aggregator
================
usage:

usage: mineraggregator.py [-h] [-e EXPORT INTERVAL] [-a ACTIVE TIMEOUT]
[-p PASSIVE TIMEOUT] [-i I]

optional arguments:
-h, --help

Show this help message and exit
-e EXPORT INTERVAL, --export-interval EXPORT INTERVAL

Number of seconds the export thread periodically sleeps
-a ACTIVE TIMEOUT, --active-timeout ACTIVE TIMEOUT

Max number of flows, when this number is reached, data are sent
to out IFC

-p PASSIVE TIMEOUT, --passive-timeout PASSIVE TIMEOUT
Number of minutes, when this number of minutes passed from last
activity, data are sent to out IFC

-i I
IFC interfaces for pytrap

Bibliography

1. BACIU, Paula. Czech Prime Minister Accuses Pirate Party of Mining Bitcoin [online].
2018 [visited on 2022-04-06]. Available from: https://bitcoinist.com/prime-minister-
accuses-czech-pirate-party-of-mining-bitcoin-so-what/.

2. MALWAREBYTES. Malvertising definition [online]. [N.d.] [visited on 2022-04-06]. Available
from: https://www.malwarebytes.com/malvertising.

3. CIMPANU, Catalin. Malvertising Campaign Mines Cryptocurrency Right in Your Browser
[online]. 2017 [visited on 2022-04-06]. Available from: https://www.malwarebytes.com/
malvertising.

4. HRUSKA, Joel. Browser-Based Mining Malware Found on Pirate Bay, Other Sites [online].
2017 [visited on 2022-04-06]. Available from: https://www.extremetech.com/internet/
255971-browser-based-cryptocurrency-malware-appears-online-pirate-bay.

5. VUIJSJE, Eliana. Cryptocurrency Malvertising Campaign Hijacks Users’ Browsers [online].
[N.d.] [visited on 2022-04-06]. Available from: https://www.geoedge.com/cryptocurrency-
malvertising-campaign-hijacks-users-browsers/.

6. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System [online]. [N.d.]
[visited on 2021-11-18]. Available from: https://bitcoin.org/bitcoin.pdf.

7. PHIPPS, Marian. How Much of The World’s Money Is in Cryptocurrency [online]. 2022
[visited on 2022-04-01]. Available from: https://revenuesandprofits.com/money-in-
cryptocurrency/.

8. KOTESKA, Bojana; KARAFILOSKI, Elena; MISHEV, Anastas. Blockchain Implementa-
tion Quality Challenges: A Literature Review. In: 2017.

9. CROSBY, Michael; PATTANAYAK, Pradan; VERMA, Sanjeev; KALYANARAMAN, Vi-
gnesh, et al. Blockchain technology: Beyond bitcoin. Applied Innovation. 2016, vol. 2, no.
6-10, p. 71.

10. HAYWARD, Andrew. What Are Privacy Coins? Monero, Zcash, and Dash Explained [on-
line]. 2021 [visited on 2022-03-14]. Available from: https://decrypt.co/resources/what-
are-privacy-coins-monero-zcash-and-dash-explained.

11. AVAN-NOMAYO, Osato. South Korea to Ban Privacy Coins from Q1 2021 [online]. 2020
[visited on 2022-04-04]. Available from: https://beincrypto.com/south-korea-to-ban-
privacy-coins-from-q1-2021/.

12. GHIMIRE, Suman; SELVARAJ, Henry. A Survey on Bitcoin Cryptocurrency and its Min-
ing. In: 2018 26th International Conference on Systems Engineering (ICSEng). 2018, pp. 1–
6. Available from doi: 10.1109/ICSENG.2018.8638208.

59

https://bitcoinist.com/prime-minister-accuses-czech-pirate-party-of-mining-bitcoin-so-what/
https://bitcoinist.com/prime-minister-accuses-czech-pirate-party-of-mining-bitcoin-so-what/
https://www.malwarebytes.com/malvertising
https://www.malwarebytes.com/malvertising
https://www.malwarebytes.com/malvertising
https://www.extremetech.com/internet/255971-browser-based-cryptocurrency-malware-appears-online-pirate-bay
https://www.extremetech.com/internet/255971-browser-based-cryptocurrency-malware-appears-online-pirate-bay
https://www.geoedge.com/cryptocurrency-malvertising-campaign-hijacks-users-browsers/
https://www.geoedge.com/cryptocurrency-malvertising-campaign-hijacks-users-browsers/
https://bitcoin.org/bitcoin.pdf
https://revenuesandprofits.com/money-in-cryptocurrency/
https://revenuesandprofits.com/money-in-cryptocurrency/
https://decrypt.co/resources/what-are-privacy-coins-monero-zcash-and-dash-explained
https://decrypt.co/resources/what-are-privacy-coins-monero-zcash-and-dash-explained
https://beincrypto.com/south-korea-to-ban-privacy-coins-from-q1-2021/
https://beincrypto.com/south-korea-to-ban-privacy-coins-from-q1-2021/
https://doi.org/10.1109/ICSENG.2018.8638208

60 Bibliography

13. TARMAN, Marko. What is solo mining and how does it work? [Online]. 2022 [visited on
2022-04-04]. Available from: https://www.nicehash.com/blog/post/what-is-solo-
mining-and-how-it-works.

14. BITCOIN PROJECT. Bitcoin Developer [online]. [N.d.] [visited on 2022-04-04]. Available
from: https://developer.bitcoin.org/devguide/mining.html.

15. HERTIG, Alyssa; LEECH, Ollie. What Does Hashrate Mean and Why Does It Matter?
[Online]. 2021 [visited on 2022-04-04]. Available from: https://www.coindesk.com/tech/
2021/02/05/what-does-hashrate-mean-and-why-does-it-matter/.

16. TU8RNER, Brian; DEMURO, Jonas P. Best mining software of 2022 [online]. 2021 [visited
on 2022-04-05]. Available from: https://www.techradar.com/best/mining-software.

17. SLUSHPOOL. Stratum V1 [online] [visited on 2021-11-18]. Available from: https : / /
braiins.com/stratum-v1.

18. SLUSHPOOL. Stratum V2 mining URLs and guide [online] [visited on 2021-11-18]. Avail-
able from: https://help.slushpool.com/en/support/solutions/articles/77000423566-
stratum-v2-mining-urls-and-guide.

19. POOLIN.COM. TLS protocol applied in Cryptocurrency mining [online]. 2021 [visited on
2022-04-05]. Available from: https://medium.com/poolin/tls-protocol-applied-in-
cryptocurrency-mining-9de15c08c405.

20. CERF, V.; KAHN, R. A Protocol for Packet Network Intercommunication. IEEE Transac-
tions on Communications. 1974, vol. 22, no. 5, pp. 637–648. Available from doi: 10.1109/
TCOM.1974.1092259.

21. POSTEL, Jon et al. Transmission Control Protocol [RFC 793]. RFC Editor, 1981. Request
for Comments, no. 793. Available from doi: 10.17487/RFC0793.

22. LEUNG, Ka-cheong; LI, Victor O.k.; YANG, Daiqin. An Overview of Packet Reordering in
Transmission Control Protocol (TCP): Problems, Solutions, and Challenges. IEEE Trans-
actions on Parallel and Distributed Systems. 2007, vol. 18, no. 4, pp. 522–535. Available
from doi: 10.1109/TPDS.2007.1011.

23. DIERKS, Tim; RESCORLA, Eric. The transport layer security (TLS) protocol version 1.2.
2008.

24. OGATA, K.; FUTATSUGI, K. Equational Approach to Formal Analysis of TLS. In: 25th
IEEE International Conference on Distributed Computing Systems (ICDCS’05). 2005, pp. 795–
804. Available from doi: 10.1109/ICDCS.2005.32.

25. MOCKAPETRIS, Paul et al. Domain names-implementation and specification. 1987.
26. CLOUDFLARE. DNS over TLS vs. DNS over HTTPS [online]. [N.d.] [visited on 2022-04-

05]. Available from: https://www.cloudflare.com/en-gb/learning/dns/dns-over-
tls/.

27. VESELÝ, Vladimı́r; ŽÁDNÍK, Martin. How to detect cryptocurrency miners? By traffic
forensics! Digital Investigation. 2019, vol. 31, p. 100884. issn 1742-2876. Available from
doi: https://doi.org/10.1016/j.diin.2019.08.002.

28. STRATUM PLATFORM. Stratum — network protocol specification: draft. In: [online].
2011 [visited on 2022-03-13]. Available from: https://docs.google.com/document/d/
17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit.

29. PASTRANA, Sergio; SUAREZ-TANGIL, Guillermo. A First Look at the Crypto-Mining
Malware Ecosystem: A Decade of Unrestricted Wealth. In: Proceedings of the Internet
Measurement Conference. Amsterdam, Netherlands: Association for Computing Machin-
ery, 2019, pp. 73–86. IMC ’19. isbn 9781450369480. Available from doi: 10.1145/3355369.
3355576.

https://www.nicehash.com/blog/post/what-is-solo-mining-and-how-it-works
https://www.nicehash.com/blog/post/what-is-solo-mining-and-how-it-works
https://developer.bitcoin.org/devguide/mining.html
https://www.coindesk.com/tech/2021/02/05/what-does-hashrate-mean-and-why-does-it-matter/
https://www.coindesk.com/tech/2021/02/05/what-does-hashrate-mean-and-why-does-it-matter/
https://www.techradar.com/best/mining-software
https://braiins.com/stratum-v1
https://braiins.com/stratum-v1
https://help.slushpool.com/en/support/solutions/articles/77000423566-stratum-v2-mining-urls-and-guide
https://help.slushpool.com/en/support/solutions/articles/77000423566-stratum-v2-mining-urls-and-guide
https://medium.com/poolin/tls-protocol-applied-in-cryptocurrency-mining-9de15c08c405
https://medium.com/poolin/tls-protocol-applied-in-cryptocurrency-mining-9de15c08c405
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.17487/RFC0793
https://doi.org/10.1109/TPDS.2007.1011
https://doi.org/10.1109/ICDCS.2005.32
https://www.cloudflare.com/en-gb/learning/dns/dns-over-tls/
https://www.cloudflare.com/en-gb/learning/dns/dns-over-tls/
https://doi.org/https://doi.org/10.1016/j.diin.2019.08.002
https://docs.google.com/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit
https://docs.google.com/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit
https://doi.org/10.1145/3355369.3355576
https://doi.org/10.1145/3355369.3355576

Bibliography 61

30. KHATRI, Yogita. Crypto Mining Malware Has Netted Nearly 5% of All Monero, Says
Research [online]. 2019 [visited on 2022-03-14]. Available from: https://www.coindesk.
com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-
monero-says-research/.

31. MCAFFEE. McAfee Labs Threats Report: December 2018 [online]. 2018 [visited on 2022-03-
14]. Available from: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-dec-2018.pdf.

32. NELSON, Jason. This Monero Malware Is Targeting Enterprise Networks [online]. 2021
[visited on 2022-03-14]. Available from: https : / / decrypt . co / 87485 / this - monero -
malware-is-targeting-enterprise-networks.

33. GALLAGHER, Sean. Two flavors of Tor2Mine miner dig deep into networks with Pow-
erShell, VBScript [online]. 2021 [visited on 2022-03-14]. Available from: https://news.
sophos.com/en-us/2021/12/02/two-flavors-of-tor2mine-miner-dig-deep-into-
networks-with-powershell-vbscript/.

34. SPEZZA, Gianluca. North Korea and the Role of Science Diplomacy [online]. 2022 [visited
on 2022-03-14]. Available from: https://isdp.eu/content/uploads/2022/01/North-
Korea-and-the-Role-of-Science-Diplomacy-24.01.2022.pdf.

35. LIU, Jingqiang; ZHAO, Zihao; CUI, Xiang; WANG, Zhi; LIU, Qixu. A Novel Approach for
Detecting Browser-Based Silent Miner. In: 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC). 2018, pp. 490–497. Available from doi: 10.1109/DSC.
2018.00079.

36. LIU, Zhaoyan; CHEN, Binfa; LI, Zhen; LI, Hui; WANG, Dengzheng; LYU, Yang; GAO, Lu;
HOU, Bingxu. Bitcoin Mining Recognition Based on Community Detection with Electricity
Consumption Data. In: 2021 IEEE 5th Conference on Energy Internet and Energy System
Integration (EI2). 2021, pp. 3091–3096. Available from doi: 10.1109/EI252483.2021.
9713449.

37. SWEDAN, AbedAlqader; KHUFFASH, Ahmad N.; OTHMAN, Othman; AWAD, Ahmed.
Detection and Prevention of Malicious Cryptocurrency Mining on Internet-Connected De-
vices. In: Proceedings of the 2nd International Conference on Future Networks and Dis-
tributed Systems. Amman, Jordan: Association for Computing Machinery, 2018. ICFNDS
’18. isbn 9781450364287. Available from doi: 10.1145/3231053.3231076.

38. KHARRAZ, Amin; MA, Zane; MURLEY, Paul; LEVER, Charles; MASON, Joshua; MILLER,
Andrew; BORISOV, Nikita; ANTONAKAKIS, Manos; BAILEY, Michael. Outguard: De-
tecting In-Browser Covert Cryptocurrency Mining in the Wild. In: The World Wide Web
Conference. San Francisco, CA, USA: Association for Computing Machinery, 2019, pp. 840–
852. WWW ’19. isbn 9781450366748. Available from doi: 10.1145/3308558.3313665.

39. MUÑOZ, Jordi Zayuelas i; SUÁREZ-VARELA, José; BARLET-ROS, Pere. Detecting cryp-
tocurrency miners with NetFlow/IPFIX network measurements. In: 2019 IEEE Interna-
tional Symposium on Measurements Networking (M N). 2019, pp. 1–6. Available from doi:
10.1109/IWMN.2019.8804995.

40. MANTISNET. Understanding the Difference Between Network Monitoring and Network
Security Monitoring [online]. [N.d.] [visited on 2022-04-05]. Available from: https://www.
mantisnet.com/blog/understanding-the-difference-between-network-monitoring-
and-network-security-monitoring.

41. GRUBERGER, David. Network Monitoring vs. Network Security Monitoring [online]. 2021
[visited on 2022-04-05]. Available from: https://vulcan.io/blog/network-security-
monitoring/.

https://www.coindesk.com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-monero-says-research/
https://www.coindesk.com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-monero-says-research/
https://www.coindesk.com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-monero-says-research/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://decrypt.co/87485/this-monero-malware-is-targeting-enterprise-networks
https://decrypt.co/87485/this-monero-malware-is-targeting-enterprise-networks
https://news.sophos.com/en-us/2021/12/02/two-flavors-of-tor2mine-miner-dig-deep-into-networks-with-powershell-vbscript/
https://news.sophos.com/en-us/2021/12/02/two-flavors-of-tor2mine-miner-dig-deep-into-networks-with-powershell-vbscript/
https://news.sophos.com/en-us/2021/12/02/two-flavors-of-tor2mine-miner-dig-deep-into-networks-with-powershell-vbscript/
https://isdp.eu/content/uploads/2022/01/North-Korea-and-the-Role-of-Science-Diplomacy-24.01.2022.pdf
https://isdp.eu/content/uploads/2022/01/North-Korea-and-the-Role-of-Science-Diplomacy-24.01.2022.pdf
https://doi.org/10.1109/DSC.2018.00079
https://doi.org/10.1109/DSC.2018.00079
https://doi.org/10.1109/EI252483.2021.9713449
https://doi.org/10.1109/EI252483.2021.9713449
https://doi.org/10.1145/3231053.3231076
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1109/IWMN.2019.8804995
https://www.mantisnet.com/blog/understanding-the-difference-between-network-monitoring-and-network-security-monitoring
https://www.mantisnet.com/blog/understanding-the-difference-between-network-monitoring-and-network-security-monitoring
https://www.mantisnet.com/blog/understanding-the-difference-between-network-monitoring-and-network-security-monitoring
https://vulcan.io/blog/network-security-monitoring/
https://vulcan.io/blog/network-security-monitoring/

62 Bibliography

42. LEE, Sihyung; LEVANTI, Kyriaki; KIM, Hyong S. Network monitoring: Present and future.
Computer Networks [online]. 2014, vol. 65, pp. 84–98 [visited on 2022-03-18]. issn 1389-1286.
Available from doi: https://doi.org/10.1016/j.comnet.2014.03.007.

43. APPNETA. Active & Passive Network Monitoring: Why enterprises need both [online].
[N.d.] [visited on 2022-03-19]. Available from: https://www.appneta.com/pdf/whitepapers/
active-passive-network-monitoring-why-enterprises-need-both.pdf.

44. SVOBODA, Jakub; GHAFIR, Ibrahim; PRENOSIL, Vaclav, et al. Network monitoring
approaches: An overview. Int J Adv Comput Netw Secur. 2015, vol. 5, no. 2, pp. 88–93.

45. BROOK, Chris. What is Deep Packet Inspection? How It Works, Use Cases for DPI, and
More [online]. 2018 [visited on 2022-04-05]. Available from: https://digitalguardian.
com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more.

46. HOFFMAN, Chris. How the “Great Firewall of China” Works to Censor China’s Internet
[online] [visited on 2022-02-21]. Available from: https://www.howtogeek.com/162092/
htg-explains-how-the-great-firewall-of-china-works/.

47. ASHOOR, Asmaa Shaker; GORE, Sharad. Difference between intrusion detection system
(IDS) and intrusion prevention system (IPS). In: International Conference on Network
Security and Applications. 2011, pp. 497–501.

48. FUCHSBERGER, Andreas. Intrusion detection systems and intrusion prevention systems.
Information Security Technical Report. 2005, vol. 10, no. 3, pp. 134–139.

49. CROTTI, Manuel; GRINGOLI, Francesco; PELOSATO, Paolo; SALGARELLI, Luca. A
statistical approach to IP-level classification of network traffic. In: 2006 IEEE International
Conference on Communications. 2006, vol. 1, pp. 170–176. Available from doi: 10.1109/
ICC.2006.254723.

50. CLAISE, B.; TRAMMELL, B.; AITKEN, P. Specification of the IP Flow Information Ex-
port (IPFIX) protocol for the exchange of flow information: Internet Engineering Task Force
[online]. 2013 [visited on 2021-11-18]. issn 2070-1721. Available from: https://www.ietf.
org/rfc/rfc7011.txt.

51. HOFSTEDE, Rick; CELEDA, Pavel; TRAMMELL, Brian; DRAGO, Idilio; SADRE, Ramin;
SPEROTTO, Anna; PRAS, Aiko. Flow Monitoring Explained: From Packet Capture to
Data Analysis With NetFlow and IPFIX [online]. 2014, vol. 16, no. 4, pp. 2037–2064 [vis-
ited on 2021-11-18]. issn 1553-877X. Available from doi: 10.1109/COMST.2014.2321898.

52. TRAMMELL, Brian; BOSCHI, Elisa. An introduction to IP flow information export (IP-
FIX). IEEE Communications Magazine. 2011, vol. 49, no. 4, pp. 89–95. Available from doi:
10.1109/MCOM.2011.5741152.

53. CEJKA, Tomas; BARTOS, Vaclav; SVEPES, Marek; ROSA, Zdenek; KUBATOVA, Hana.
NEMEA: A framework for network traffic analysis. In: 2016 12th International Conference
on Network and Service Management (CNSM). 2016, pp. 195–201. Available from doi:
10.1109/CNSM.2016.7818417.

54. MAHESH, Batta. Machine learning algorithms-a review. International Journal of Science
and Research (IJSR).[Internet]. 2020, vol. 9, pp. 381–386.

55. GONG, Zhiqiang; ZHONG, Ping; HU, Weidong. Diversity in Machine Learning. IEEE Ac-
cess. 2019, vol. 7, pp. 64323–64350. Available from doi: 10.1109/ACCESS.2019.2917620.

56. IBM CLOUD EDUCATION. Machine Learning [online]. 2020 [visited on 2022-03-28]. Avail-
able from: https://www.ibm.com/cloud/learn/machine-learning.

57. MINKA, Thomas. Automatic Choice of Dimensionality for PCA. In: Advances in Neural
Information Processing Systems. MIT Press, 2000, vol. 13. Available also from: https:
//proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-
Paper.pdf.

https://doi.org/https://doi.org/10.1016/j.comnet.2014.03.007
https://www.appneta.com/pdf/whitepapers/active-passive-network-monitoring-why-enterprises-need-both.pdf
https://www.appneta.com/pdf/whitepapers/active-passive-network-monitoring-why-enterprises-need-both.pdf
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more
https://digitalguardian.com/blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more
https://www.howtogeek.com/162092/htg-explains-how-the-great-firewall-of-china-works/
https://www.howtogeek.com/162092/htg-explains-how-the-great-firewall-of-china-works/
https://doi.org/10.1109/ICC.2006.254723
https://doi.org/10.1109/ICC.2006.254723
https://www.ietf.org/rfc/rfc7011.txt
https://www.ietf.org/rfc/rfc7011.txt
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/MCOM.2011.5741152
https://doi.org/10.1109/CNSM.2016.7818417
https://doi.org/10.1109/ACCESS.2019.2917620
https://www.ibm.com/cloud/learn/machine-learning
https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf

Bibliography 63

58. SAGI, Omer; ROKACH, Lior. Ensemble learning: A survey. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery. 2018, vol. 8, no. 4, e1249.

59. PYKES, Kurtis. The Difference Between Classification and Regression in Machine Learning
[online]. 2021 [visited on 2022-04-05]. Available from: https://towardsdatascience.com/
the-difference-between-classification-and-regression-in-machine-learning-
4ccdb5b18fd3.

60. FIX, Evelyn; HODGES, Joseph Lawson. Discriminatory analysis. Nonparametric discrim-
ination: Consistency properties. International Statistical Review/Revue Internationale de
Statistique. 1989, vol. 57, no. 3, pp. 238–247.

61. TRIGUERO, Isaac; GARCIA-GIL, Diego; MAILLO, Jesus; LUENGO, Julian; GARCIA,
Salvador; HERRERA, Francisco. Transforming big data into smart data: An insight on
the use of the k-nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery. 2019, vol. 9, no. 2, e1289.

62. TSANGARATOS, Paraskevas; ILIA, Ioanna. Comparison of a logistic regression and Näıve
Bayes classifier in landslide susceptibility assessments: The influence of models complexity
and training dataset size. CATENA. 2016, vol. 145, pp. 164–179. issn 0341-8162. Available
from doi: https://doi.org/10.1016/j.catena.2016.06.004.

63. ARYA, Nisha. Linear vs Logistic Regression: A Succinct Explanation [online]. 2022 [vis-
ited on 2022-04-05]. Available from: https://www.kdnuggets.com/2022/03/linear-
logistic-regression-succinct-explanation.html.

64. GUPTA, Prashant. Decision Trees in Machine Learning [online]. 2017 [visited on 2022-04-
05]. Available from: https://towardsdatascience.com/decision-trees-in-machine-
learning-641b9c4e8052.

65. BREIMAN, Leo. Random forests. Machine learning. 2001, vol. 45, no. 1, pp. 5–32.
66. AKAR, Özlem; GÜNGÖR, Oguz. Classification of multispectral images using Random For-

est algorithm. Journal of Geodesy and Geoinformation. 2012, vol. 1, no. 2, pp. 105–112.
67. SCHAPIRE, Robert E. Explaining adaboost. In: Empirical inference. Springer, 2013, pp. 37–

52.
68. DEMPSTER, A. P. Upper and Lower Probabilities Induced by a Multivalued Mapping.

The Annals of Mathematical Statistics. 1967, vol. 38, no. 2, pp. 325–339. Available from
doi: 10.1214/aoms/1177698950.

69. SHAFER, Glenn. A Mathematical Theory of Evidence. Princeton University Press, 2021.
isbn 9780691214696. Available from doi: doi:10.1515/9780691214696.

70. SHAPIRO, Stuart C. The Dempster-Shafer theory. [N.d.]. Available also from: http://
www.glennshafer.com/assets/downloads/articles/article48.pdf.

71. BEZERRA, E. D. C.; TELES, A. S.; COUTINHO, L. R.; SILVA E SILVA, F. J. da.
Dempster-Shafer Theory for Modeling and Treating Uncertainty in IoT Applications Based
on Complex Event Processing. Sensors (Basel). 2021, vol. 21, no. 5.

72. SMETS, Philippe. Data fusion in the transferable belief model. In: Proceedings of the third
international conference on information fusion. 2000, vol. 1, PS21–PS33.

73. SMETS, Philippe; KENNES, Robert. The transferable belief model. Artificial intelligence.
1994, vol. 66, no. 2, pp. 191–234.

74. SHAFER, Glenn. Dempster-Shafer Theory [online]. [N.d.] [visited on 2022-04-19]. Available
from: http://fitelson.org/topics/shafer.pdf.

75. YE, Zhouteng. An Example of Dempster-Shafer Theory [online]. 2018 [visited on 2022-04-
19]. Available from: https://zyeeee.wordpress.com/2018/06/06/an- example- of-
dempster-shafer-theory/.

https://towardsdatascience.com/the-difference-between-classification-and-regression-in-machine-learning-4ccdb5b18fd3
https://towardsdatascience.com/the-difference-between-classification-and-regression-in-machine-learning-4ccdb5b18fd3
https://towardsdatascience.com/the-difference-between-classification-and-regression-in-machine-learning-4ccdb5b18fd3
https://doi.org/https://doi.org/10.1016/j.catena.2016.06.004
https://www.kdnuggets.com/2022/03/linear-logistic-regression-succinct-explanation.html
https://www.kdnuggets.com/2022/03/linear-logistic-regression-succinct-explanation.html
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://doi.org/10.1214/aoms/1177698950
https://doi.org/doi:10.1515/9780691214696
http://www.glennshafer.com/assets/downloads/articles/article48.pdf
http://www.glennshafer.com/assets/downloads/articles/article48.pdf
http://fitelson.org/topics/shafer.pdf
https://zyeeee.wordpress.com/2018/06/06/an-example-of-dempster-shafer-theory/
https://zyeeee.wordpress.com/2018/06/06/an-example-of-dempster-shafer-theory/

64 Bibliography

76. CHATZIGIANNIS, Panagiotis; BALDIMTSI, Foteini; GRIVA, Igor; LI, Jiasun. Diversifica-
tion across mining pools: optimal mining strategies under PoW. Journal of Cybersecurity.
2022, vol. 8, no. 1. issn 2057-2085. Available from doi: 10.1093/cybsec/tyab027. tyab027.

77. COIN MARKET CAP. Today’s Cryptocurrency Prices by Market Cap [online]. [N.d.] [vis-
ited on 2022-04-06]. Available from: https://coinmarketcap.com/.

78. COINBASE. What is market cap? [Online]. [N.d.] [visited on 2022-04-06]. Available from:
https://www.coinbase.com/learn/crypto-basics/what-is-market-cap.

79. BTC. Btc [online]. [N.d.] [visited on 2022-04-06]. Available from: https://btc.com/.
80. MINING POOL STATS. Mining Pool Stats Ethereum [online]. [N.d.] [visited on 2022-04-06].

Available from: https://miningpoolstats.stream/ethereum.
81. MINING POOL STATS. Mining Pool Stats Monero [online]. [N.d.] [visited on 2022-04-06].

Available from: https://miningpoolstats.stream/monero.
82. CAMACHO, José; WASIELEWSKA, Katarzyna. Dataset Quality Assessment in Autonomous

Networks with Permutation Testing. Seventh IEEE/IFIP International Workshop on Ana-
lytics for Network and Service Management. 2022.

83. GOOGLE, LLC. Classification: True vs. False and Positive vs. Negative [online]. 2020
[visited on 2022-04-13]. Available from: https://developers.google.com/machine-
learning/crash-course/classification/true-false-positive-negative.

84. RASCHKA, Sebastian. An overview of general performance metrics of binary classifier
systems. arXiv preprint arXiv:1410.5330. 2014.

https://doi.org/10.1093/cybsec/tyab027
https://coinmarketcap.com/
https://www.coinbase.com/learn/crypto-basics/what-is-market-cap
https://btc.com/
https://miningpoolstats.stream/ethereum
https://miningpoolstats.stream/monero
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative

Contents of enclosed CD

README.txt .. file with contents description
datasets

datasets.7zip.....................................archive with datasets 01-04
notebooks..folder with Jupyter notebooks
rule generator..........................folder with source codes of rule generator
src

detector...................................folder with source codes of detector
aggregator.............................. folder with source codes of aggregator
reporter...................................folder with source codes of reporter
thesis..folder with LATEX source codes

text
thesis.pdf..thesis in PDF format

65

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Theoretical Part
	Cryptocurrency
	Mining and mining pools
	Mining protocols
	Abusive mining
	Previous attempts of mining detection

	Network monitoring
	Deep Packet Inspection
	IDS/IPS Systems
	Flow-based network monitoring
	NEMEA

	Machine Learning
	Selected supervised ML algorithms

	Dempster-Shafer theory

	Datasets
	Current situation of cryptocurrencies
	Local examination of miners' traffic
	Traffic capture on CESNET
	Creating datasets
	Summary

	Analysis and design
	Analysis of traffic from CESNET
	Design
	ML classifier
	Stratum detector
	TLS SNI Classifier
	Meta classifier
	Implementation
	Miner aggregator
	IDEA reporter

	Evaluation
	Datasets' quality
	Permutation tests

	Performance metrics
	Performance of the miner detector
	Deployment on CESNET

	Conclusion
	Selected mining pools
	Permutation test results
	ML models' results
	Experimental credibility values
	User manual
	Contents of enclosed CD

