
Towards reusable models in traffic
classification
Jan Luxemburk and Karel Hynek
FIT at Czech Technical University in Prague and CESNET

Introduction

The machine learning communities, such as those around computer vision
or natural language processing, have developed numerous supportive tools.
In contrast, the network traffic classification (TC) field falls behind, and the
lack of standard datasets and model architectures holds the entire field
back. Our goal is to address this issue. We created CESNET Models, a
package comprising pre-trained deep learning models tailored for traffic
classification. The included models are trained on public datasets for the
task of web service classification. Using the new package, researchers and
practitioners can skip the model design from scratch and the collection of
large datasets but instead focus on fine-tuning and adapting models to their
specific needs, thus accelerating the speed of model development.

Obstacles to reusable models in traffic classification

Reusing of ML models in the TC field has been minimal compared to other
fields. One of the reasons is that researchers often do not publish source
code for their experiments and model definitions, which is more common
in other ML fields. There are additional difficulties that complicate model
reuse: differences in computer networks and their users, diverse production
environments influencing the requirements in terms of false positive rate and
inference speed, or general label differences worldwide.

However, we consider the lack of a standard input feature format to be one
of the main obstacles to model reusability in the TC field.

Common model inputs

Flow statistics represent common features describing a network connection,
such as the number of transmitted bytes and packets in both directions or the
time duration of the connection. More features can be related to TCP flags,
histograms, or how the connection ended (e.g., with TCP FIN termination).

Packet sequences describe the first N packets of the connection, for each
packet including its size, direction, inter-packet time, and sometimes the size
of the TCP window or the presence of the PUSH flag.

The payload of the first packet is often used in TC literature. However,
its usefulness is questionable as complex ML models learn to extract
informative strings, which is a task more suitable for pattern-matching
algorithms.

Even though these features are standard across TC literature, their
parametrization is not. The following table lists the main differences.

Table 1. Differences in model inputs.

Flow statistics

Feature set
Packet size - entire vs. after transport headers
Computed from the entire connection vs. the first N packets
Differences in the flow creation process (e.g., timeouts, hashing, collisions)

Packet sequences

Packet size - entire vs. after transport headers
Included vs. excluded TCP SYNs, ACKs
Sequence length
Extra packet features, such as TCP window size or the presence of the PUSH flag

First packet payload Size and start offset of the payload

Our contribution

We publish PyTorch implementation and pre-trained weights for models
that were used in our previous works. We also started implementing
architectures developed by other TC research groups. Models are trained
on public datasets of TLS and QUIC traffic—namely CESNET-TLS22, CESNET-
QUIC22, and CESNET-TLS-Year22. These datasets are available via another
package called DataZoo [1], which streamlines the work with large network
traffic datasets.

Broader cooperation of research groups is needed to settle on the model
input format and start sharing and reusing TC models more. We believe our
open-source tools can help this effort.

Available models

In the current version, the package includes these models:

mm-CESNET V1 introduced for the classification of TLS web services [2].
It is provided with weights pre-trained on the CESNET-TLS22 dataset.
mm-CESNET V2 updated for a QUIC classification task [3], visualized in
Figure 1. It is provided with weights pre-trained on CESNET-QUIC22.
1d-CNN processing packet sequences with ResNet blocks, a small model
used in [4].
mm-CESNET Enhanced, an updated version of our multi-modal
architecture that includes ResNet blocks, an embedding layer for packet
sizes, and has fewer parameters while maintaining the same
classification performance.

Sequence of 

Packet Metadata Flow Statistics

Concatenate to build

 Shared Representation

PSTATS
Convolutions

   Dropout(0.1)
GeM Global Pooling()
Conv1D (300, 4, 2, 0)
Conv1D (300, 5, 1, 0)
Conv1D (300, 5, 1, 0)

 Conv1D (200, 5, 1, 2) 
 Conv1D (200, 5, 1, 2) 
 Conv1D (200, 5, 1, 2) 

 BatchNorm()
 ReLu()

 Conv1D (200, 7, 1, 3)

FLOWSTATS Linears

Dropout(0.1)
Linear(225)
 Linear(225) 
 Linear(225) 

 BatchNorm()
 ReLu()

 Linear (225)

Predicted Class K 

Shared Layers

Linear(NUM_CLASSES)

Dropout(0.2)
 BatchNorm()

 ReLu()
 Linear(600)

Figure 1. The mm-CESNET V2 model. The parameters represent: Conv1D(#filters,
kernel_size, stride, padding), Linear(#out_features), Dropout(rate).

How to use

from cesnet_models.models import MM_CESNET_V2_Weights, mm_cesnet_v2

pretrained_weights = MM_CESNET_V2_Weights.CESNET_QUIC22_Week44
model = mm_cesnet_v2(weights=pretrained_weights, model_dir="models/")
transforms = pretrained_weights.transforms

Complete examples in Jupyter notebooks are available at the QR code.

References

[1] J. Luxemburk and K. Hynek, “DataZoo: Streamlining traffic classification experiments,” in Proceedings of
the 2023 on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking, ser. SAFE ’23.
ACM, 2023, p. 3–7.

[2] J. Luxemburk and T. Čejka, “Fine-grained TLS services classification with reject option,” Computer
Networks, vol. 220, p. 109467, Jan. 2023.

[3] J. Luxemburk, K. Hynek, and T. Čejka, “Encrypted traffic classification: the QUIC case,” in 2023 7th
Network Traffic Measurement and Analysis Conference (TMA), 2023, pp. 1–10.

[4] C. Wang, A. Finamore, P. Michiardi, M. Gallo, and D. Rossi, “Data augmentation for traffic classification,” in
Passive and Active Measurement, 2024, pp. 159–186.

Github CESNET/cesnet-models LINK cesnet.github.io/cesnet-models Envelope luxemburk@cesnet.cz

https://github.com/CESNET/cesnet-models
https://cesnet.github.io/cesnet-models/
mailto:luxemburk@cesnet.cz

