FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Evaluation of captured flow data of suspicious devices
Student: Jan Suchara

Supervisor: Ing. Tomas Cejka, Ph.D.

Study Programme: Informatics

Study Branch: Computer Security and Information technology
Department: Department of Computer Systems

Validity: Until the end of summer semester 2019/20

Instructions

Study the current technologies of network traffic monitoring based on flow data, especially the NEMEA
system [1] and the new set of modules - the Adaptive Filter (AF) by Filip Suster [2].

Study the principle of the "Scenarios" functionality of AF and analyze its output data.

Design an algorithm for automatic processing and evaluation of the AF output data to compute statistical
information (e.g., unique destination IPs, frequency of data flows, or services used by suspicious IPs) and
provide a report for security teams.

Implement the algorithm as the Evaluator module for the AF.

Test the functionality, precision, and performance of the developed module.

References

[1] T.Cejka, et al.: "NEMEA: A Framework for Network Traffic Analysis," in 12th International Conference on Network
and Service Management (CNSM 2016), Montreal, Canada, 2016

[2] Suster, Filip: Automaticka detekce podezielého sitového provozu pomoci blacklistil. Diplomova prace. Praha: Ceské
vysoké ucéeni technické v Praze, Fakulta informacnich technologii, 2019

prof. Ing. Pavel Tvrdik, CSc. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague January 28, 2019

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Evaluation of Captured Flow Data of
Suspicious Devices

Jan Suchara

Department of Computer Systems

Supervisor: Ing. Tomas Cejka, Ph.D.

May 16, 2019

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Tomas Cejka,
Ph.D., and to Ing. Filip Suster for their guidence and help with this thesis.
My thanks also go to my family and my girlfriend for their selfless support
during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 16, 2019

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Jan Suchara. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Suchara, Jan. Evaluation of Captured Flow Data of Suspicious Devices. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

Tato prace se zaméruje na analyzu sifového provozu klientd komunikujicich s
adresami na verejnych blacklistech. Hlavnim cilem bylo rozlisit atributy pro-
vozu, které mohou byt pouzity k rozeznani bezného provozu od provozu na-
kazenych zafizeni. Vysledkem préace je modul Evaluator pro systém NEMEA,
ktery rozsifuje existujici sadu modula blacklistfilter. Evaluator pocita statis-
tiky provozu podezielych adres a vyuziva ndmi ziskané vysledky k omezeni
poctu false positive hlaseni.

Klicova slova analyza sitového provozu, detekce botneti, C&C, TPFIX,
NEMEA

Abstract

This thesis focuses on the analysis of traffic generated by clients communi-
cating with addresses on public blacklists. The main goal was to identify
traffic attributes which could be used to differentiate the malicious traffic
from benign traffic. The result of this work is a module for the NEMEA
system—Evaluator. The module extends the functionality of existing module
set blacklistfilter. Evaluator is designed to determine statistics of suspicious

vii

traffic and uses results of our measurements to reduce the number of false
positive alerts.

Keywords network traffic analysis, botnet detection, C&C, IPFIX, NE-
MEA

viii

E Analvsig

1.1 IP Flow and Export Protocolsl

1.2 NEMEA System

1.2.1 Traffic Analysis Platfond

1.2.2 Unified Record

Contents

1.3 Warden e 5
1.4 NERij 6

1.5 Blacklistfilter Module§ 6
1.5.1 Blacklist Downloaderl 6

1.5.2 Detector Modulesl 7

1.5.3 Adaptive Filter| oo 8

I‘Z Dataset analvsisl 11
2.1 Approach 12
2.2 Resultd. 15

3 Design 19
|4 Realisatiod 23
4.1 Split Evidencd 23
1.2 Changes in TRAPl 24

1.3 Evaluatoﬂ 25
b Testing and Deploymend 27
31
B graphy 33

ix

A Acronyms

IB Contents of enclosed C]j

35

37

List of Figures

1.1 UniRec record structurei 5
1.2 Blacklistfilter modulesl 7
1.3 Example of a scenario event in J SONI 9
|2.1 Visualisation of a thresholdl 17
B.l Schema of Evaluator and Split evidence’ 21
|4.1 Example of Evaluator’s alert in J SONI 26
b.l Results of memory testing with Valgrind 28

xi

List of Tables

2.1 CTU-13 dataset trafﬁd 13
2.2 Publicblacklistd 13
2.3 Results of statistical testd 15
|4.1 Input UniRec template’ 24
H.1 Performance test resultsl 28
H.2 Detection test result4 29

xiii

Introduction

With the Internet’s rapid growth and its expanding user base, the number
of attacks on connected devices rapidly rises. Attackers’ motives are diverse:
ideological, political or pure curiosity. However, the primary motivation re-
mains the same—financial interests. Despite the extensive campaign, raising
public awareness, and countermeasures, new threats still emerge. Practically
every device connected to the internet poses a threat.

In recent days, we have been observing an increase in attacks targeted
on smartphones or IoT devices. These gadgets often works out-of-the-box,
and users neglect their proper configuration. Nevertheless, users are not al-
ways who is to be blamed. Nowadays, it is common that hacker groups or
secret services offer a substantial amount of money for discovering zero-day
vulnerabilities. As an effect, malware becomes increasingly sophisticated, and
its detection more challenging. Attackers take advantage of new technologies
and approaches, some of which were created to protect regular users, e.g.,
encryption, faster hardware for password cracking.

One of the most widespread and potentially destructive threats are bot-
nets. These networks of malware-infected devices—bots—are remotely con-
trolled by hackers—botmasters. Botmasters use bots in various ways like
launching distributed denial-of-service attacks, stealing personal information,
or spreading other malicious applications. Hence, it is desirable to discover
these malicious hosts as soon as possible so they could not do more harm
to other parts of the infrastructure. Detection of bots is an immensely com-
plex topic researched by experts all over the world. Several approaches, like
signature-based or anomaly detection, are used. These techniques often com-
bine DPI (deep packet inspection), machine learning algorithms and network
flows analysis. The flow analysis could be a reliable tool for early detection of
possible threats. It could be used in situations where DPI fails due to encryp-
tion, its demands on computation power, or when the privacy of users has to
be preserved. Several platforms for analysing network flows exist.

In this thesis, we set to analyse the traffic of clients reported as suspicious

INTRODUCTION

by existing NEMEA modules. Our main task was to develop a new module
which would measure statistics about said hosts and then generate a report
for a response team. For this purpose, we compared attributes of malicious
botnet communication with those of regular traffic. During our experiments,
we identified which characteristics differentiate infected hosts from benign
ones. Furthermore, we developed a method that could help to decrease the
number of false positive alerts. The results led to the creation of Evaluator
module, which was integrated with the existing solution.

Motivation

The main goal of this thesis is to analyse suspicious clients’ traffic and summa-
rization of its attributes. Thanks to the blacklistfilter module set, the result
of Ing. Filip Suster’s work, we could collect flows of devices communicating
with entities on publicly available blacklists. The module generated a basic
report about each incident. We set to extend its functionality to provide more
information. As a result, a new module Evaluator was created. It is used to
enrich blacklistfilter’s alerts with additional information about the monitored
clients. Consequently, it is easier to decide whether the traffic is regular or if
the device represents a real threat.

The first_chapter describes the concept of network flows, principles of its
collection. Bection 1.ﬂ and Bection 1.5| are dedicated to the NEMEA system,
its surrounding infrastructure, and details about the blacklistfilter modules.
Approaches to suspicious clients’ traffic analysis and its results are presented
in . The final part of the thesis describes the design and the imple-

mentation of new modules for traffic analysis.

CHAPTER].

Analysis

This chapter introduces the concept of network flows and describes principles
of their collection. The following section presents the NEMEA System and its
essential components designated for building flow-analysis programs. Finally,
I explain the work of Ing. Filip Suster on whose results this thesis builds
upon. Comprehension of mentioned topics was necessary for the fulfilment of
defined goals.

1.1 IP Flow and Export Protocols

Flow traffic measurement is a widely used technique for monitoring large net-
works. It provides insight into information flows inside these networks and
may help with bottleneck identification or nefarious activity detection.

A flow can be defined as a set of IP packets which share common at-
tributes in Internet and Transport layer headers, typically source IP address,
destination IP address, source and destination port number, and transport
layer protocol. Other characteristics (such as packet count, bytes transferred,
flow duration, and more) may also be collected [L1].

Packets are assigned to flows when they pass a point in a network called
flow exporter, usually a router or L3® switch. Whenever a flow expires (i.e.,
no additional packets of the given flow were received during the predefined
time window) a flow record containing aggregated information is generated.
This record is sent to a flow collector where it is stored for offline analysis.
Flow analysers are then able to calculate various statistics from stored flows
and present them to the operator.

Exporting protocols define flow collection mechanisms, which attributes
are to be monitored, and details of communication between collectors and
exporters. As of today, several of these protocols developed by various vendors

'OSI Layer 3 (Network Layer)

1. ANALYSIS

are in existence, most notably IPFIX (IP Flow Information Export) [2] and
Cisco’s NetFlow v9 [3].

1.2 NEMEA System

NEMEA, which stands for Network Measurements Analysis, is an open-source
modular system for IPFIX flow processing developed in CESNET. It provides
network administrators and security experts with a framework for automated
real-time analysis of network traffic [4].

Building blocks of the system are the so-called modules—independent units
running as separate processes. Each module has a predefined set of input and
output Traffic Analysis Platform (TRAP) interfaces which are used to ex-
change data with other modules. Every interface is one-way only and trans-
mits data in a custom format defined in Unified Record (UniRec) protocol or
JSON in a stream-wise manner, i.e., one record at a time.

This design makes extending the system with more modules simple and
provides users with the ability to assemble it correspondingly to their specific
needs.

1.2.1 Traffic Analysis Platform

As previously mentioned, all modules inside NEMEA use TRAP interfaces
for exchanging data. These interfaces are implemented inside the libtrap
dynamic library. Whenever a module is loaded, the library handles initializa-
tion of interfaces based on parameters given to the process. TRAP interface
can be one of the following typess:

e Unix domain socket
e TCP interface

e TLS interface

o Blackhole interfaceE
« File interface

Additionally, the library allows the user to set 3 more attributes of each in-
terface, e.i., buffering strategy, timeout, and interval of buffer emptying.

*https://nemea.liberouter.org/trap-ifcspec/
3Equivalent of Unix null device

1.3. Warden

1.2.2 Unified Record

Unified Record (UniRec) is a binary data format used by TRAP interfaces. A
template defines structure of each record and describes which fields are inside
a single record. Type of fields denotes which information it can hold. One
template is assigned to an interface at initialization and must not change dur-
ing the interface’s lifetime. Therefore, the format of exchanged data remains
constant. The list of currently supported data types inside a UniRec record
spans from simple integers and floats to MAC and IP addresses or strings of
variable lengths.

0 4 8
| | |
O i
- DST_IP
- SRC_IP
32 ~ TIME_FIRST
~ TIME_LAST
} BYTES PACKETS
54 |__DST_PORT SRC_PORT |PROTO[FLAGS| @URL (86)
_|__@Foo (88) @BAR (95)
- URL (18 bytes)
o6 ~ [FOO (2 bytes)
_ BAR (7 bytes) \

D Static fields |:| Static part

|:| Offsets of dyn. fields |:| Dynamic part

Figure 1.1: Mlustration of UniRec record representing an IP flow with custom
fields [p]

1.3 Warden

VVszenE is a system based on a server-client architecture developed at CES-
NET. It is used for sharing information about network anomalies and threats
between security teams. The central server receives events from sending clients
(e.g., alerts from intrusion detection system, honeypots, or NEMEA modules)
and ensures their redistribution to receiving clients. Messages exchanged be-

“https://warden.cesnet.cz/en/architecture

1. ANALYSIS

tween the server and clients are in a custom format—IDEA (Intrusion De-
tection Extensible Alert). The system is designed currently deployed in the
CESNET?2 network.

1.4 NERD

Network Entity Reputation Database (NERD) is a modular system serving as
a source of information about IP addresses, networks, domains and other net-
work entities. It is designed to collect alerts about malicious activities from
various detection systems like Warden. It provides additional information,
e.g., geolocation, whether the address acts as a TOR exit node. Furthermore,
the database contains all detected incidents related to each entity. A reputa-
tion score is determined for each record. The score expresses the ”"probability
of future attacks combined with their expected severity” [6]. An Entity is
removed from the system whenever no malicious activity was detected for a
given period of time. A REST API is provided to query the database for
information about individual entities in the JSON format.

1.5 Blacklistfilter Modules

This thesis sets out to examine and further analyse the output of an existing
set of NEMEA modules named blacklistfilter. Its purpose is to detect possibly
malicious communication between clients and blacklisted entities outside of
our network, capture all of the related traffic, and report the event. Ing. Filip
Suster created Blacklistfilter as a result of his master thesis. The following
section is based on his work [[7] and explains the basic principles of individual
modules.

1.5.1 Blacklist Downloader

Downloader is a Python module that periodically gathers blacklists from
sources defined in its configuration file. Blacklists are of the following types:

o IPv4
o IPv6
« URL

« DNS

Plain text or CSV files are supported. Following data download, the module
merges individual lists, removes duplicities, and sorts the records. The last
step is crucial for the correct functioning of other modules. Subsequently,

6

1.5. Blacklistfilter Modules

Basic flows Basic flows HTTP flows DNS flows
Adaptive IP fdaptve P URL pns T
aptive «---| detection T i) A i
detector file detector detector |€7 detector |77
A J A
Universal :
H aggregator H
Blacklist
adaptive H | downloader
events
: ‘ Blacklist aggregator
sCcenario events i
Adaptive Filter Scenarios
Evidence
r .‘\..
') () cesnhet
Evaluator
‘ (offine anaiysis) ‘ ‘ Reporter }—’ wa rd en

Figure 1.2: Blacklistfilter modules structure [H]

blacklists are written to files according to their type, e.g., ip4.blist, url.blist,
etc.

Another useful feature of the downloader is versioning of used blacklists.
Hence, it is possible to track how they changed in time and determine in which
version an entity was added or removed.

1.5.2 Detector Modules

These modules are the core of blacklistfilter. They are responsible for the
detection of malicious flows. The emphasis was on performance and effec-
tiveness; therefore they were written in C/C++. Each detector has an input
interface on which it listens for incoming flows in UniRec format. Received
flows are tested whether they originate from a blacklisted entity. Whenever
a match is found, various fields (depending on the type of the detector) are
added to the record. Afterwards, it is sent to the output interface. There are
3 types of detectors:

o IP detector

1. ANALYSIS

« URL detector
e« DNS detector

Detectors have a dedicated thread which listens for changes in blacklist files.
Every time a file is edited, e.g., downloader updates it, modules load it into
their memory.

IP detector inspects destination and source address of each flow. It uses
binary search to traverse IP blacklist file. Records sent to the output interface
are extended with SRC_BLACKLIST and DST_BLACKLIST fields. 64-bit numbers
inside these fields represent bitmaps. They indicate on which blacklists was
the source or the destination address found.

URL and DNS detectors monitor clients’ requests for blacklisted domains.
Their output UniRec template includes fields with additional HT'TP and DNS
protocol data.

Adaptive IP Detector

The function of this module is almost identical to the IP Detector. It collects
all flows concerning clients previously communicating with malicious hosts.
The adaptive detector has its own blacklist file which is managed by Adaptive
Filter. IPs of suspicious clients inside our network are added or removed
dynamically. Monitored IP is removed when a specific time from the last flow
to a blacklisted entity has elapsed; hence, no more flows are captured. The
output of this module is analysed by Evaluator and will be described in a later
chapter.

1.5.3 Adaptive Filter

Adaptive Filter is a Python module which collects data from IP/URL aggre-
gators and DNS detector. Each incoming record is called a detection event.
Upon receiving a detection event, dedicated thread inside this process checks
whether any prior communication with a particular key (blacklisted entity)
was observed. If no match is found, a new instance of scenario event is cre-
ated, and module signals Adaptive IP Detector to start capturing flows of
the client. Otherwise, the corresponding instance is updated. A scenario is
an essential aspect of the design. It is a class which holds information about
individual detections and determines which action will be performed. The
Adaptive Filter module can be easily extended with new scenarios and exist-
ing ones can be modified or removed, depending on the current need.
Adaptive Filter periodically measures elapsed time since the first detection
event for every scenario. If it exceeds evidence timeout (specified among the
module’s parameters), a report in the JSON format is sent to the output inter-
face and clients associated with this event ends are no longer monitored. The

8

1.5. Blacklistfilter Modules

”first__detection_ts”:1554494682.327665,
"key”:71.2.3.4",
7id 7:” a4e60be0 —5669—414a—a84d —75804cad79fe ",
"event__type”:” BotnetDetection”,
"grouped__events ”:]
{
7ts_ first ”7:1312967397.858,
”source”:7173.192.170.88”,
7ts_last ”7:1312984101.404,
”src_sent__bytes”:324964,
“type”:7ip”7,
targets 7:|
”111.222.111.2227
I,

”src__sent__packets”:1493,
7tgt__sent_ flows”:359,
”source_ ports 7: |

80

?protocol 7:6,
”agg win_minutes”:0.1,
”blacklist__id ”:2,
7?src__sent_ flows”:303,
"tgt_sent_bytes”:343824,
7tgt_sent__packets”:4108
}
] b
”last__detection_ts”:1554494682.327667,
”grouped__events_cnt”:1

Figure 1.3: Example of a scenario event in JSON

report holds information about the blacklisted address, clients communicat-
ing with it, and statistics about the traffic aggregated during the aggregation
window.

CHAPTER 2

Dataset analysis

The main goal of this thesis is to analyse the traffic of suspicious clients,
i.e., those communicating with blacklisted addresses, and generate a report
for a response team. The report should summarise statistics which would
help to decide whether the threat is real or not. We developed this thought
further. If we could identify characteristics differentiating benign traffic from
malicious, we could report only clients whose communication mimics that
originating from known infected hosts. Consequently, the number of false
positive detections could decrease. A host could be incorrectly classified as
malicious when connecting to a legitimate service running on a blacklisted
address or after initiating a horizontal scan of network with that address.

For this purpose, it was necessary to analyse the traffic of botnet samples.
We used publicly available dataset CTU-13. The next step was to compare
its characteristics with those of average traffic inside a network where would
be our tools deployed. This demanded the creation of another dataset which
represents communication inside the CESNET2 network. Both sets of data
are described in the following sections.

CESNET?2 dataset

The CESNET?2 dataset was created from the real network traffic at the perime-
ter of the Czech national research and education network infrastructure, i.e.,
the dataset contains all traffic from CESNET2 to foreign networks, and vice
versa, and transit traffic that went via CESNET2 bordering links.

There are 8 bordering links at the perimeter of CESNET2. Each is being
monitored by a monitoring probe—flow exporter—that aggregates packet data
into IPFIX records. The IPFIX data were collected on a collector server and
converted into UniRec format to be easily processable using NEMEA system
[4] that is deployed on the collector for traffic analysis and anomaly detection.

The dataset was anonymized using a Crypto-PAn [8] method implemented

11

2. DATASET ANALYSIS

in the anonymizer module of the NEMEA system. Generally, this method
transforms all IP addresses (with respect to the protocol version, i.e., IPv4
and IPv6) so they are no longer associated with real network prefixes and
hosts. However, the method preserves relations between original addresses
that communicated between each other.

Network traffic contained in the dataset was captured in 7 hours from
all monitoring probes. The traffic consisted of 1.2 billion flow records that
transferred 64.6 billion packets and 65.8 TB. Besides traditional NetFlow fields
(SRC_IP, DST_IP, SRC_PORT, DST_PORT, PROTOCOL, TCP_FLAGS, TIME_FIRST,
TIME_LAST, BYTES, PACKETS), there are additional fields: TTL, TOS, LINK_ID,
DIR_ID.

CTU-13 dataset

Malicious traffic was obtained from CTU-13 Dataset created by a team at
Czech Technical University for Stratosphere IPS project. The dataset contains
communication of 13 botnet samples. Each scenario consists of the traffic
originating from the malware, other hosts in the network and background
traffic. Scenarios are of various length and show malicious activities of one
or multiple infected machines (C&C communication, port scanning or spam
distribution). The experiment was carried in a laboratory environment. Hosts
ran as virtual machines running Microsoft Windows XP SP2 and were bridged
into to university network. The traffic was being captured on the VM’s hosts
and on the router to include the flows of the background traffic [9]. The
authors provided PCAPH files with separated botnet related communication,
which was ideal for our purposes.

2.1 Approach

The goal of our experiments was to find out whether the attributes of be-
nign and malicious communication differ and how. Before we could compare
the two datasets mentioned earlier, it was necessary to filter data in CES-
NET2 dataset. At first, all the transient traffic contained in it was removed.
Afterwards, we had to identify potentially infected clients (i.e., those commu-
nicating with blacklisted addresses) and separate them from the rest of the
hosts. For this purpose, we created an aggregated blacklist from those down-
loaded by blacklist downloader in the course of data collection. We used the
following publicly available IP blacklists:

e ZeuS Trackera—a blacklist of C&C servers of Zeus crimeware kit

SPacket Capture
Shttps://zeustracker.abuse.ch/

12

2.1.

Approach

Table 2.1: Distribution of traffic for each scenario in the CTU-13 dataset [9]

1D Background Botnet Normal Bots
1 10,124,854 (95.40%) 94,972 (0.89%) 392,433 (3.69%) 1
2 6,071,419 (95.59%) 54,433 (0.85%) 225,336 (3.54%) 1
1 4,381,899 (94.60%) 75,891 (0.49%) 744,270 (4.89%) 1
4 3,895,469 (91.91%) 6466 (0.15%) 336,103 (7.93%) 1
5 416,267 (91.37%) 2129 (0.46%) 37,144 (8.15%) 1
6 2,031,967 (94.12%) 4927 (0.22%) 121,854 (5.64%) 1
7 425,611 (93.71%) 293 (0.06%) 28,270 (6.22%) 1
8 11,451,205 (95.47%) 12,063 (0.10%) 530,666 (4.42%) 1
9 6,881,228 (90.22%) 383,215 (5.02%) 362,594 (4.75%) 10
10 4,535,493 (87.54%) 323,441 (6.24%) 321,917 (6.21%) 10
11 119,933 (29.33%) 277,892 (67.97%) 11,010 (2.69%) 3
12 119,933 (29.33%) 277,892 (67.97%) 11,010 (2.69%) 3
13 1,218,140 (93.76%) 21,760 (1.67%) 59,190 (4.55%) 1

e Feodo Trackerﬁ—blacklist of C&Cs associated with Feodo malware fam-
ily, i.e., Dridex, Emotet/Heodo

¢« Ransomware Trackerg—blacklist of IPs of ransomware sites and botnet
C&C servers

. MalcOdeH—a daily updated list of domains that have been identified as

distributors of malware

Table 2.2: Number of IP addresses on blacklist during the time interval of the
dataset

Blacklist Number of IPs
ZeuS Tracker 113
Feodo Tracker 318
MalcOde 80
Ransomware Tracker 347

Total 858 (856 unique)

Thttps:/ /feodotracker.abuse.ch/blocklist /
8https://ransomwaretracker.abuse.ch/
“http://malcOde.com/bl/

13

2. DATASET ANALYSIS

The resulting list was passed to Adaptive IP Detector as it was re-run again
over the captured data. As a result, we obtained all the clients whose traffic
could be considered suspicious. The approach identified 628 IPs communicat-
ing with 67 blacklisted addresses transferring 33,555 flows (83,096,746 bytes)
in total. That represented only 0.003% of the overall traffic. In this phase, we
were left with about 803,000 addresses. This number is significantly higher
than the actual count of active hosts inside the network. We observed more
than 648,000 clients with no outgoing and an insignificant number of incoming
flows. The probable cause was a horizontal scan of the CESNET2 network—
the flow-collector records flows whether the destination device responses or
not. These addresses were also removed. The remaining data representing
circa 159,000 clients were used to calculate average per-IP statistics of the
CESNET network and compared with those of the CTU-13 dataset.

For the extraction of information, we utilised blacklistfilter, existing_tools
provided by the NEMEA system and the Evaluator module described in
. A list with all IPs from the CENSET?2 range was generated and passed
to Adaptive IP Detector which processed captured data again. The module’s
output consisted of individual clients’ records marked with a unique ID de-
fined in the said list. Lastly, the Evaluator was used to analyse the result.
The extraction of information from the malware dataset required conversion of
PCAP files to the UniRec format. This was achieved by utilising the program
flow_meter provided by the NEMEA Framework. Afterwards, we repeated
the same steps.

We were interested in attributes that are not dependent on the length
of time the traffic capture lasted, e.g., number of transmitted bytes, packets
or flows. Reason for this was that the duration of available malware traffic
samples varied significantly. Observed average characteristics were measured
for both incoming and outgoing communication:

o Bytes per packet

o Packets per flow

o Packets per second

e Bytes per second

o Ratio of sent and received flows, packets, and bytes
e Count of unique IPs and ports contacted

Average of transmitted packets and bytes per second were estimated from the
overall duration of observed flows divided by the sum of these attributes.

14

2.2. Results

2.2 Results

The results of measurements described in the previous section were analysed
in statistical software R Studio [10]. Data representing datasets were loaded
into the program as two data frames and means of all observed attributes were
calculated. Despite the knowledge of a decreased robustness for the data with
unknown statistical distribution, we conducted statistical hypothesis tests us-
ing the Welch’s t-test to determine whether we could distinguish the legitimate
traffic from botnet traffic based on data available. Both used datasets contain
a sufficient number of observations which means that yielded results should
be asymptotically approaching the real values. More rigorously, we used the
two-sample Welch’s t-test to determine whether means of the value extracted
from the benign traffic puegic were statistically significantly different from the
those of botnet traffic ppet, i-e.,

Hy : Hbot = Hilegit,
Hy @ pipot 7& Hlegit »

Table 2.3: Results of statistical tests

Attribute Ibot Miegit p-value
Bytes received/sent 1.5640 78.1806 <0.0001
Packets received/sent 0.2209 47.4944 <0.0001
Flows received /sent 0.3421 57.5497 <0.0001
Packets per flow received 12.6743 46.8425 <0.0001
Packets per flow sent 52.4224 61.1361 0.8077
Packets per second received 2.8825 78.4948 <0.0001
Packets per second sent 5.8640 68.8428 <0.0001
Bytes per packet received 645.9626 431.2462 0.0546
Bytes per packet sent 576.9199 143.7808 <0.0001
Bytes per second received 3235.4860 15965.369 <0.0001
Bytes per second sent 3699.904 6657.938 0.2175
Unique IPs contacted 1964.1429 159.8249 0.0336
Unique ports contacted 22689.8857 161.9317 0.0002

The said test is implemented as an R function t.test. Means finot, fegit
and results are presented in . We can see that the p-value is lower

15

2. DATASET ANALYSIS

than 0.05 for several measured attributes. Hence, we rejected the hypothesis
Hy at the level of significance 0.05. These attributes are:

o ratios of sent and received bytes, packets and flows
o number of packets per sent flow
e bytes per packet sent

o number of unique IPs and ports contacted

These results led us to the conclusion that these characteristics could be
used to identify malicious hosts inside out network. The question is whether
these attributes remain the same for other types of malware or how would
they differ in other networks.

Based on our observations, we proposed a method which could be used
to decrease the number of false positive alerts generated by Adaptive Fil-
ter. We utilised the results to calculate thresholds for each of the attributes
distinguishing bots from benign hosts.

To find this threshold, we determined the median value of the attribute
for both types of traffic. We chose a median for its statistical property en-
suring that a half of observations lie above it and the second half is located
below it. The median of one group was always smaller than the other but the
method would work even if it was not. Then, we iterated over the interval
between them in steps of size 0.01. In each step, we determined the percent-
age z of observations which exceeded the current value from the group with
lower median. For the other group, we were interested in the percentage y of
observations whose value was below the value. Afterwards, we calculated the
value x/y. The threshold was the value fulfilling the criteria that x/y should
be as close to 1 as possible. This approach minimises the number of incor-
rectly categorized hosts. Graphical representation of our approach is shown

A client was marked as malicious whenever thresholds of 5 and more at-
tributes were exceeded. The method was implemented in Evaluator module
and its prediction_accuracy was tested on both datasets. Results of the tests
are presented in Chapter 5.

16

2.2. Results

Median 1 Threshold Median 2

Frequency

i

I 1 I 1 1
0 5 10 15 20

Parameter value

Figure 2.1: Visualisation of a threshold value lying between medians 1 and 2
of an attribute for given groups, i.e. botnet and benign traffic

17

CHAPTER 3

Design

In the following chapter, I will describe the design of the newly created NE-
MEA modules Evaluator and Split evidence. The modules were created as
a result of this thesis. Evaluator serves as a replacement for a script in Adap-
tive Filter which provided only basic information about detection events. Its
purpose is the processing of information received from Adaptive Filter and
analysis of flows from suspicious clients. Split Evidence is a supportive mod-
ule which converts flows into a form readable by Evaluator.

Changes in Evidence

Initially, it was necessary to propose a method of storing the output of Adap-
tive IP Detector and Adaptive Filter. The existing implementation kept most
of the information inside the so-called evidence. The evidence consisted of two
files:

o evidence detection
e evidence_adaptive

The first file contained details about scenario events detected by Adaptive
Filter. The latter one held captured flows of targeted clients.

This solution was not suitable for our purpose because we needed to store
information related to individual events separately. Mentioned behaviour also
made the analysis of data very time consuming because it was necessary to
read the whole file each time. It also meant that the files could not be deleted
while Adaptive Filter was in operation. This issue needed to be addressed,
because the size of the evidence could increase rapidly.

A new module—Split evidence—was created to cope with this problem.
Split evidence receives data from Adaptive IP Detector and sorts them into
files dedicated for individual scenarios. With this module, the emphasis is on

19

3. DESIGN

its efficiency. It has to process flows as fast as it receives them. Otherwise, it
could cause a data loss or a decrease in the detector’s performance. Hence, it
was implemented in C/C++.

Evaluator

This module processes observed flows of suspicious clients, determines statis-
tics about the traffic, and generates reports for the detection system. The
important aspect of its design is that it decides which alerts received from
Adaptive Filter are relevant and which are so-called false positives. The mod-
ule has predefined thresholds for each of the identified characteristics differ-
entiating normal traffic in the CESNET2 from the one generated by bots.
Their values were estimated based on the approach described in .
The following list summarises all information which the module collects about
both incoming and outgoing flows and could be used to identify anomalies:

e Count of unique IP addresses and ports contacted by the client
e Number of received and sent flows

o Total size of transmitted data in bytes

e Number of packets and their average size

o Packets and flows per second

o Average flow duration

The monitored host is reported as malicious whenever 4 or more attributes
of its traffic reach given thresholds. In the other case, the report is not sent
into the detection system. Instead, it is stored together with the related data.
This approach helps to decrease the number of false positive detections but
preserves information needed in the case of other incidents. The Evaluator also
search the NERD database for details about the blacklisted address. Finally,
a detection alert in JSON format is created.

20

Basic flows Basic flows HTTP flows DNS flows

l I

s "y

Adaptive IP dorton i URL pNs [
aptive I | detection o .
detector file detector detector || detector Detection files

Universal
aggregator

R

Blacklist
downloader

adaptive
events

Blacklist aggregator

I

evidence _ Henariey
Y Adaptive Filter Scenarios

v scenario events

Captured
flows

cesnet

"h|.. Evaluator ’—’ !!ﬁ_l’den
jﬁ
NEDD

Figure 3.1: Schema of Evaluator and Split Evidence modules

illustrates the updated scheme of the Blacklistfilter module set
and its interconnection with new modules. Added modules are featured in
reen, the existing ones are in grey. For consistency, the same labelling as in
%] is used, i.e., exchange of UniRec records and data in the JSON format are
represented by black and red arrows respectively.

21

CHAPTER 4

Realisation

This chapter describes the details of the implementation of new modules. Our
main goal was to create an efficient and robust program which could be easily
integrated with the NEMEA system. In the process of realisation, we had to
make a few modifications to the existing design and extend the functionality
of libraries in the infrastructure.

4.1 Split Evidence

The module receives data from Adaptive IP Detector through a TRAP inter-
face. The template of the input interface is shown in . The incoming
record is converted from UniRec to comma-separated values format (CSV).
Then the module inspects the ADAPTIVE_IDS field and appends the flow into a
dedicated file based on its value. The field contains a randomly generated ID
of a scenario detected by Adaptive Filter. The ID is shared by all flows orig-
inating from or addressed to the blacklisted IP during the evidence timeout.
As a result, the data concerning individual scenarios are separated from others
and their processing is much more convenient. The reason for choosing the
CSV format over UniRec was its simplicity. It allowed us to process records
without using additional libraries. The NEMEA System provides tools for
conversion back to UniRec so other parts of the system still could work with
the data.

Split evidence has two threads. The main thread calls blocking function
trap_recv in an infinite loop. Whenever this function returns a record, split
evidence converts are from binary to a text representation. Converted data
are then passed to write_to_file method of the class FileHandler which
manages file I/O operations. Tests revealed that naive implementation which
opened a file, appended a record, and closed the file, was not effective enough.
Keeping files opened was also not feasible because operating systems limit the
number of simultaneously opened file descriptors. Thus, it was necessary to

23

4. REALISATION

propose a method of utilising buffering. FileHandler contains a map from C++
Standard Template Library (STL) which uses scenario event IDs as keys. Each
key is associated with a structure holding a buffer and a variable representing
a timestamp of the last write. If the buffer has sufficient capacity, data are
appended to it. Otherwise, the buffer is flushed into a file. The complexity
of insertion to, finding and deleting from STL’s map is O(logn). The second
thread periodically checks the time elapsed since the last write for each file.
Whenever a write did not occur during a predefined limit, the corresponding
buffer is flushed, and the structure is freed from memory.
The Module accepts 3 mandatory parameters:

e —p PATH — Path to a directory where to store files
e -f NAME — UniRec field with the value used for splitting

e -i IFC_SPEC — TRAP interface for incoming data

Table 4.1: Input UniRec template

UniRec field Name Description

ipaddr DST_IP Destination IP address
ipaddr SRC_IP IP address of origin
uint64 BYTES Number of bytes sent

DST_BLACKLIST

uint64 SRC_BACKLIST Set to 999 for monitored clients to 0 otherwise
time TIME_FIRST Time and date of flow’s start

time TIME LAST Time and date of flow’s end

uint32 PACKETS Total number of packets in the flow

uint16 DST_PORT Destination port

uint16 SRC_PORT Source port

uint8 PROTOCOL Protocol number

string ADAPTIVE_IDS ID of the associated scenario event

4.2 Changes in TRAP

As mentioned above, we decided to store data in the CSV format. This re-
sulted in the need to make changes in the libtrap. The library did not
support this feature natively. The NEMEA system already provides tools for
conversion of UniRec to CSV but they cannot sort individual records into files
dynamically based on a value of a given field. Consequently, it was necessary

24

4.3. Evaluator

to call an external program every time we needed to analyse captured data.
This method would not be feasible in a real-world scenario due to its ineffi-
ciency. As a result, a new APl—unirec2csvapi—was implemented and made
publicly available as a part of the NEMEA Framework. It is implemented in
the C language like the rest of the library. Functions urcsv_header and
urcsv_record allow users to effortlessly convert a classic UniRec template
and records to their human-readable in the CSV format.

4.3 Evaluator

Evaluator was implemented in Python because we aimed for good code read-
ability and swift development. C or C++ is certainly faster; however, the
data Evaluator operates with are already stored persistently. Thus, in this
case, speed is not the main factor. The module processes saved flows and
determines traffic statistics for individual IP addresses. The module has 4
running threads:

« one receiving thread collecting scenario events from Adaptive Filter
e two worker threads reading and processing flow records from files
e a thread for reporting alerts

The module listens for reports about detected scenario events on an input
interface. The reception indicates that all of the data are available and files
may be manipulated safely. Incoming data are put inside a synchronized
queue by the receiving thread. Worker threads monitor the queue and remove
item-by-item as they process it. Each thread opens a file corresponding to the
given event and begins to read individual records. The DST_BLACKLIST and
SRC_BLACKLIST field in each record is inspected to identify monitored IPs (the
value of the field will be set to 999; a constant defined by Adaptive Filter). An
internal structure (class named MonitoredClient) with counters of individual
traffic attributes is created for each of those addresses. Whenever all flows were
examined, the worker moves the structure to the reporting queue. Reporting
thread then decides whether to send an alert or not. In the first case, the saved
data (CSV files) are deleted. Otherwise, they are moved to another location
together with the report. The module must be run with these 3 parameters

e ——csv-path PATH — path to output directory of Split Evidence

e ——evidence-path PATH — directory for storage of unreported events
and related data

e —-i IFC_SPEC — TRAP interface for receiving scenario events from Adap-
tive Filter

25

4. REALISATION

7ip”:71.2.3.47,

"statistics 7:{
"bytes_sent”:143289496,
”packets_sent”:1162871,
?flows__sent ”:15436,
"bytes_recv”:1140413592,
"packets_recv”:1042525,
?flows__recv”:10394,
”floats__per_sec_recv”:24.409661472705285,
”floats__per_sec_sent”:36.250484365276,
”"pkts__per_sec_recv”:8.871585848868998,
"pkts__per_sec_sent”:6.408484933226045,
"bytes__per_sec_recv”:9704.589419577529,
"bytes__per_sec_sent”:789.656441862901,
”"bytes__per_pkt_recv”:1093.8956782810965,
"bytes__per_pkt_sent”:123.22045695524267,
”ips_ contacted 7:2544,
"ports”:53

K
"nerd__info”:{

” asn ” . [] ,
"bgppref”:{ },
” bl ” : [] ,
Yevents 7:|
{
7cat”:” ReconScanning”,
7date”:72019-04-10",
’7n’7,5
. b
"node”:”cz.cesnet .nemea. vportscan”

Figure 4.1: Example of Evaluator’s alert in JSON

26

CHAPTER 5

Testing and Deployment

The performance of new modules had to be tested before their deployment on
the collector. We focused on flow-processing capabilities (number of flows per
seconds) and memory consumption. Split evidence and evaluator were tested
with a traffic sample of the CESNET2 subnet. The total size of the sample
was 1.17GiB and it contained communication of 32,768 clients transferring
10,000,000 flows. The average memory usage and time taken to process the
data was calculated from 20 runs. The UNIX program time was used for
measurements. Additional tests of Split evidence were conducted to eliminate
data races and to ensure correctness of memory handling. For this purpose,
we used Valgrind™, AddressSanitizer™~ and ThreadSanitizer profiling
tools. Programs were executed on a machine with the following configuration:

e Operating system: Linux Mint 19.1 Tessa
o Processor: Intel(R) Core(TM) i7-6700HQ CPU 2.60GHz
e Memory: 16GiB DDR4 2133 MHz

o Hard disk drive: 256GB M.2 SSD

During the tests, we also verified whether the modules cooperate with
the rest of the existing infrastructure correctly. More precisely, we focused
on the flow exchange between Adaptive IP Detector, Adaptive Filter, Split
Evidence and Evaluator. The final number of flows stored for analysis was
compared with the anticipated count obtained from the unirecfilter. This
program filters UniRec records based on a defined set of rules and it is a part
of the NEMEA Framework. We used the filter to extract flows connected to
the host reported as suspicious and compared the results with the output of

Yhttp://valgrind.org/
"https://github.com/google/sanitizers /wiki/AddressSanitizer
2https://github.com/google/sanitizers /wiki/ ThreadSanitizerCppManual

27

5. TESTING AND DEPLOYMENT

==20381== Command: ./splitevidence -p csv/ -f ADAPTIVE_IDS -i f:10m_test.

trapcap
==20381==
==20381==
==20381== HEAP SUMMARY:
==20381== in use at exit: O bytes in O blocks
==20381== total heap usage: 26,481,253 allocs, 26,481,253 frees,
114,575,689,262 bytes allocated
==20381==
==20381== All heap blocks were freed -- no leaks are possible
==20381==
==20381== For counts of detected and suppressed errors, rerun with: -v
==20381== ERROR SUMMARY: O errors from O contexts (suppressed: O from 0)

Figure 5.1: Results of memory testing with Valgrind

the module set. This approach confirmed correctness of our implementation.
The shows results of conducted tests. Despite the flow-processing
capabilities of Evaluator may seem low, we are confident its no impediment
to its functionality due to the small number of suspicious activities observed
in the network it operates on.

Table 5.1: Performance test results

Module Time Memory usage Avg. flows per second
Split evidence 26.3s 668.7 MiB 380966.9
Evaluator 309.5s 76.1 MiB 32310.2

The final phase of testing was dedicated to measuring Evaluator’s precision
of identifying infected hosts. We configured the module to use thresholds
obtained from experiments described in. Afterwards, we let the
module analyse the traffic of bots from the CTU-13 dataset and the traffic of
hosts from CESNET2 dataset which were marked as suspicious by Adaptive
Filter. The subject-matters of our tests were the following:

1. How many bots would be recognised

2. The number of hosts from the CESNET network whose traffic marked
as truly malicious (i.e., number of reports generated)

Evaluator correctly identified all bots from the malicious dataset. Results
are presented in . The total number of suspicious clients in the
CESNET2 dataset was 638. Among them were 106 addresses that did not

send any flows. The module evaluated 351 clients from the remaining 532 as
probably malicious and generated a report.

28

Table 5.2: Detection test results

Dataset # of suspicious IPs Reported as malicious Percentage
CTU-13 35 35 100%
CESNET?2 638 351 55%

Blacklistfilter modules were deployed together with Evaluator and Split
Evidence on a testing collector inside the CESNET?2 network. At the time of
writing this thesis, we are still waiting for the evaluation of results from the
real-world application.

29

Conclusion

The goal of this thesis was to create a module for the NEMEA system which
would analyse the output of Adaptive Filter and calculate statistical informa-
tion. For fulfilling this task, it was necessary to study the concept of network
flows, principles of their collection, and their analysis. Afterwards, I had to
acquaint myself with the design and implementation of Adaptive Filter and
related modules from the NEMEA framework. In the course of writing this
work, a unique dataset was created. It represents normal traffic observed in
the CESNET2 network. Statistical analysis of the dataset and samples of
various malware led to the identification of several characteristics specific for
botnet traffic. These results could be used to increase the precision of threat
detection.

Consequently, it should help security teams in their task of recognizing and
responding to threats. Our experiments and results were summarized in an
article submitted for the prestigious ACM Internet Measurement Conference.
At the time of writing this work, we are waiting for its acceptance.

Our effort led to the creation of a new module for NEMEA system—
Evaluator. The module cooperates with Adaptive Filter and could be inte-
grated into the existing infrastructure. Tests in a closed environment proved
the correctness of Evaluator’s design and confirmed it could be deployed in
the real-world scenario. Therefore, the main goals of the thesis have been
fulfilled.

31

Bibliography

FELDMANN, A.; GREENBERG, A.; LUND, C.; REINGOLD, N.; REX-
FORD, J.; TRUE, F. Deriving traffic demands for operational IP net-
works: methodology and experience. IEEE/ACM Transactions on Net-
working [online]. 2001, vol. 9, no. 3, pp. 265-279 [visited on 2019-03-10].
Available from DOI: 10.1109/90.929850.

AITKEN, P. Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of Flow Information [online]. RFC Editor,
2013 [visited on 2019-04-19]. ISSN 2070-1721. Available from DOI: 10.
17487/rfc7011. Technical report.

CLAISE, B. (ed.). Cisco Systems NetFlow Services Ezport Version 9 [on-
line]. RFC Editor, 2004 [visited on 2019-04-19]. ISSN 2070-1721. Avail-
able from DOI: 10.17487/rfc3954. Technical report.

CEJKA, Tomas; BARTOS, Véclav; SVEPES, Marek; ROSA, Zdenek;
KUBATOVA, Hana. NEMEA: A Framework for Network Traffic Analysis
[online]. 2016 [visited on 2019-04-28]. Available from DOI: 10. 1109/
CNSM.2016.7818417.

BARTOS, V; ZADNIK, M; CEJKA, T. Nemea: Framework for stream-
wise analysis of network traffic. CESNET, ale, Tech. Rep. [online]. 2013
[visited on 2019-04-03]. Available from: https://www.cesnet.cz/wp-
content/uploads/2014/02/trapnemea.pdf.

BARTOS, Véclav. Creating a Network Reputation Database [online].
2016 [visited on 2019-05-07]. Available from: https://nerd.cesnet.cz/
tncl6-poster.pdf.

SUSTER, Filip. Automatickd detekce podezielého sitového provozu po-
moci blacklisti. Praha, 2019. Available also from: https://dspace .
cvut . cz/handle /10467 / 79796. Master’s thesis. Ceské vysoké uceni
technické v Praze. Fakulta informacnich technologii.

33

http://dx.doi.org/10.1109/90.929850
http://dx.doi.org/10.17487/rfc7011
http://dx.doi.org/10.17487/rfc7011
http://dx.doi.org/10.17487/rfc3954
http://dx.doi.org/10.1109/CNSM.2016.7818417
http://dx.doi.org/10.1109/CNSM.2016.7818417
https://www.cesnet.cz/wp-content/uploads/2014/02/trapnemea.pdf
https://www.cesnet.cz/wp-content/uploads/2014/02/trapnemea.pdf
https://nerd.cesnet.cz/tnc16-poster.pdf
https://nerd.cesnet.cz/tnc16-poster.pdf
https://dspace.cvut.cz/handle/10467/79796
https://dspace.cvut.cz/handle/10467/79796

BIBLIOGRAPHY

10.

34

FAN, Jinliang; XU, Jun; AMMAR, Mostafa H; MOON, Sue B. Prefix-
preserving IP address anonymization: measurement-based security eval-
uation and a new cryptography-based scheme. Computer Networks. 2004,
vol. 46, no. 2, pp. 253-272.

GARCIA, S.; GRILL, M.; STIBOREK, J.; ZUNINO, A. An empirical
comparison of botnet detection methods. Computers € Security [online].
2014, vol. 45, pp. 100-123 [visited on 2019-03-24]. Available from DOI:
10.1016/j.cose.2014.05.011.

RSTUDIO TEAM. RStudio: Integrated Development Environment for R.
Version 1.2.1335 [software]. Boston, MA, 2018 [visited on 2019-03-27].
Available from: https://www.rstudio.com/.

http://dx.doi.org/10.1016/j.cose.2014.05.011
https://www.rstudio.com/

APPENDIX A

CSV Comma-separated values
DNS Domain Name System

DPI Deep packet inspection

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation
STL Standard Template Library
URL Uniform Resource Locator
TOS Type of Service

TTL Time To Live

VM Virtual Machine

35

Acronyms

APPENDIX B

Contents of enclosed CD

readme.BXb .. vvviriienennnnnnn the file with CD contents description
ST o o PP the directory of source codes
t Impl. .o implementation sources

thesiS...cvvvveinn... the directory of IATEX source codes of the thesis
L72=5 & v the thesis text directory
Lthesis.pdf the thesis text in PDF format

	Introduction
	Analysis
	IP Flow and Export Protocols
	NEMEA System
	Traffic Analysis Platform
	Unified Record

	Warden
	NERD
	Blacklistfilter Modules
	Blacklist Downloader
	Detector Modules
	Adaptive Filter

	Dataset analysis
	Approach
	Results

	Design
	Realisation
	Split Evidence
	Changes in TRAP
	Evaluator

	Testing and Deployment
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

