
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

P2P Botnet Detection in Computer

Networks

Jan Neužil

Supervisor: Ing. Tomáš Čejka

15th May 2014

Acknowledgements

I would like to thank my supervisor Tomáš Čejka and CESNET organization
for leading my steps during the writing of this thesis. Mostly, my gratitude
belongs to my family and friends for their support and patience during my
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on 15th May 2014 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2014 Jan Neužil. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Neužil, Jan. P2P Botnet Detection in Computer Networks. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2014.

Abstract

This bachelor’s thesis examines the issue of P2P botnets which is one of the
major Internet security threats. The goal of this thesis is analysis and real-
ization of a functional generic module for monitoring system which detects
P2P botnet communication. The thesis focuses on graph-based techniques of
detection which depends only on the basic communication flow information.

During the work on this thesis, I have created a functional module for
detection of P2P botnet communication using the approaches of the mutual
contacts graph and the dye-pumping algorithm. The real network traffic has
been merged with synthetic P2P botnet topology. This dataset has been
captured within a malware capture facility project on the university network.
The implemented module achieves flawless results within the botnet dataset
containing no false positives.

Keywords P2P botnet detection, network security, network traffic moni-
toring

ix

Abstrakt

Tato bakalářská práce zkoumá problematiku P2P botnet̊u, které tvoř́ı jednu
z hlavńıch hrozeb na Internetu. Ćılem této práce je analýza a realizace
obecného funkčńıho modulu pro monitorovaćı systém detekuj́ıćı komunikaci
v rámci P2P botnetu. Tato práce se zaměřuje na techniky detekce použ́ıvaj́ıćı
grafové struktury, které záviśı pouze na základńıch informaćıch komunikačńıho
toku.

Během práce na tomto projektu jsem vytvořil funkčńı modul detekuj́ıćı
komunikaci v rámci P2P botnetu. Tento modul využ́ıvá grafu společných
kontakt̊u a s ńım spojený algoritmus. Reálná data ze śı̌tového provozu byla
sloučena s uměle vytvořenou topologíı P2P botnetu. Tato data byla zachyceny
na univerzitńı śıti v rámci jiného projektu na odhalováńı škodlivé śı̌tové komu-
nikace. Na těchto datech implemetovaný modul dosáhl bezchybných výsledk̊u.

Kĺıčová slova detekce P2P botnetu, śı̌tová bezpečnost, monitorováńı provozu
v śıti

x

Contents

Introduction 1

Goals of the Thesis . 2

List of Module Requirements . 2

Text Structure of the Thesis . 3

1 Botnet Phenomenon 5

1.1 Botnet Characteristics . 6

1.2 Botnet Life-cycle . 7

1.3 Types of Attacks . 8

1.4 Centralized Botnets Detection 8

1.5 P2P Botnets Detection . 10

2 Analysis and Design 13

2.1 Mutual Contacts Graph . 13

2.2 Module Deployment . 15

2.3 Dynamic Libraries . 16

2.4 Module Algorithms . 17

3 Realization 23

3.1 Module Parameters . 23

3.2 Module Interfaces . 24

3.3 Module Structures . 24

3.4 Module Workflow . 27

4 Testing and Evaluation 29

4.1 Source Code Dynamic Analysis 29

4.2 Dataset . 29

4.3 Evaluation . 31

Conclusion 33

xi

Future work . 33

Bibliography 35

A Acronyms 39

B Installation Manual 41
B.1 Dependencies . 41
B.2 Module installation . 41

C Contents of Enclosed CD 43

xii

List of Figures

1.1 Centralized Topology of a Botnet 5
1.2 Decentralized Topology of a Botnet 6

2.1 Monitored Network . 14
2.2 Creation of Mutual Contacts Graph 15
2.3 TRAP Architecture . 17
2.4 UniRec Flow Record . 18
2.5 Illustration of P2P Botnet Communication 19

3.1 Module Interfaces . 25
3.2 IP Binary Tree . 26
3.3 Module Workflow . 27

4.1 Valgrind Output . 30
4.2 Dataset Sample . 30
4.3 Module Output . 32

C.1 Contents of Enclosed CD . 43

xiii

List of Tables

1.1 Malware Threats . 8
1.2 Comparison of Botnet Detection Techniques 11

xv

Introduction

Botnets represent one of the biggest Internet security threats. Botnet is a
set of infected computers gathered into one interconnected controllable struc-
ture. Botnet is operated via C&C (Command and Control) servers which
maintain and control the infected computers through various channels. An
infected computer is usually referred as a bot. Among various types of mali-
cious activities, botnets are predominantly used for DDoS (Distributed Denial
of Service) attacks, sending spam e-mails, setting up phishing sites, stealing
sensitive personal data causing an identify fraud or brute-force cracking of
hashed passwords [30].

Early botnets had used a centralized structure where all bots were oper-
ated from one or more C&C servers. This approach had provided a great
vulnerability for owners of botnet (botmasters). This single point of failure
could free whole botnet from its botmaster. These traditional botnets mostly
have used IRC (Internet Relay Chat), HTTP (Hypertext Transfer Protocol)
or other instant messaging protocols for communication, thus it was easier to
trace them using several detection methods [19]. Many botnets were shut-
down after they had been detected. Despite all the efforts of attackers to hide
their commands via encrypted messages or different protocols, sooner or later
a botnet has been discovered using different detection methods. With a single
point of failure it had been only a matter of time when the botmaster was cut
off from its bots.

Nowadays, botnets rely on decentralized P2P (Peer-to-Peer) structure
which is much more resilient against single points of failure. Moreover, P2P
networks are highly interconnected for reasons of reliability, which makes them
distinguishable from client-server traffic [27]. However, distinguishing the P2P
botnet C&C communication traffic from common P2P communication is much
more difficult. Attackers also hide the communication with bots using encryp-
tion or randomly generated ports, thus most of the known centralized botnet
detection techniques fail. Fortunately, one aspect can not be forged, that
is the basic communication flow. Because botnet evolved into resilient P2P

1

Introduction

decentralized structure and traditional botnet detectors can not discover so-
phisticated C&C communication, the need for a generic method to detect P2P
botnet traffic in computer networks has been proposed.

In this bachelor’s thesis, I will describe the issue of botnets in computer
networks. Then, I will discuss and analyze existing botnet detection tech-
niques. In the next part of the thesis, I will implement a module using generic
method to detect P2P botnet communication. In the evaluation part, I will
test the module on simulated network data. In the last part, I will conclude
the work.

Goals of the Thesis

One of the goals of my bachelor’s thesis is to study behaviour of P2P networks
using flow data from monitoring system. The main goal is to implement a
module which uses suitable graph structures to detect suspicious hosts which
might have been compromised and now act as bots.

Some of the P2P detection methods rely on finding botnet-specific signa-
tures, catching anomalies in traffic or examining payload, the main advantage
of my module is generality based on the approach in [13, 27]. It uses only
source and destination IP addresses and direction of flow as the essential in-
formation.

The result of my work is a functional module to detect suspicious behaviour
in monitored networks. The module will be added to distributed modular
system [8] among other detection modules and useful monitoring programs.
My personal goal is to optimize the module to be able to detect suspicious in
with very low false positive rate.

List of Module Requirements

Botnets are one of the major issues that appear on many current networks.
To decrease malicious activity coming from botnets, further researches and
approaches have to be proposed in the P2P botnet domain. This lack of generic
efficient detection methods has been my primary motivation. I have attempted
creation of a module which would detect P2P botnet communication in Czech
Network Research and Education Network (NREN). Hence, I have defined
these requirements to the work:

• independence to a P2P botnet kind,

• efficient detection using captured traffic in the short time period,

• implementation as a module to the distributed modular framework,

• usage of efficient graph algorithms and structures,

2

Text Structure of the Thesis

• successful test with low positive rate both on simulated and real network
traffic.

Some of these requirements have also become tasks of my bachelor’s thesis.

Text Structure of the Thesis

This bachelor’s thesis is divided into four chapters:

Chapter 1 - Botnet Phenomenon
This chapter gives a brief overview of botnet phenomenon. It analyzes
and describes botnet characteristics. This includes the way how user’s
computer becomes a bot, former and current solutions of botnet detec-
tion and overall brief to the given issue. The overview also involves
traditional centralized botnet structure, the diversification of detection
methods and other information gained in the exploration of facts about
botnets.

Chapter 2 - Analysis and Design
This chapter describes the most suitable generic solution for the mod-
ule. It formally defines the chosen approach using graph-based method,
describes the module environment and gives a pseudo-code of the used
algorithm.

Chapter 3 - Realization
This chapter describes the realization of the module. It defines struc-
tures and functions used in the implementation of P2P botnet detection
module, describes all its parameters and interfaces and shows the module
workflow.

Chapter 4 - Testing and Evaluation
This chapter shows results of testing. It tests the source code with
dynamic analysis, describes the used dataset for the module evaluation
and shows the result of detection on the simulated network traffic data.

3

Chapter 1

Botnet Phenomenon

Botnets can be divided into two major groups [30]. Traditional botnets have a
centralized structure as it is shown in Figure 1.1. More resilient modern P2P
botnets have a decentralized structure as it is shown in Figure 1.2. In this
chapter, it will be briefly described detection techniques in centralized botnets
as well.

To understand botnet phenomenon, I will describe the botnet characteris-
tics. Then, I will describe a life-cycle of a botnet, how the host gets infected
and when it is possible to detect malicious activity on a computer. In the end,
I will summarize types of attacks and detection techniques. For this survey of
botnet characteristics, I will cite and use article by Feily et al. [16].

Figure 1.1: Centralized topology of a botnet (source: Ditrich et al. [15])

5

1. Botnet Phenomenon

Figure 1.2: Decentralized topology of a botnet (source: Ditrich et al. [15])

1.1 Botnet Characteristics

The word botnet is a combination of the words robot and network. Admin-
istrators of botnets called botmasters exploit vulnerabilities of unsecured
hosts to take control over a targeted computer. When a targeted computer is
infected with a malicious application, the computer becomes a servant to its
botmaster, a bot.

The application can also reproduce itself using self-propagating virus.
Mostly, it spreads the infection when the victim is connected to the Inter-
net. Methods of infections are similar to common malware intrusion such
as trojan horses, phishing, spam e-mails or social engineering techniques to
download malicious bot code. There are plenty of methods to get infected and
the attackers tend to be very resourceful.

After all, botnet business is very lucrative. Today, a botnet can be illegaly
rented for malicious activity at customer’s wish. According to iDefense team
from Verisign [2], the average prize 9$ has been calculated per hour of botnet
services in 2010. Most of the offers have been found on the Russian blogs.

Very significant characteristic of a botnet is a communication. They use a
C&C communication channels to control and to keep bots in active state. A
multi-tier architecture of C&C channels provides anonymity to the botmaster.
Many communication protocols and a wide range of logical network topologies
are used to avoid being detected. Because of that, botnets are usually classified
by their communication protocols.

6

1.2. Botnet Life-cycle

According to the communication protocol classification, major groups are
formed by IRC-based, HTTP-based, DNS-based (Domain Name System) and
P2P-based botnets. Most of the traditional centralized botnets used IRC
protocol as it has been originally designed for communication among large
number of hosts in social chat rooms. IRC protocol has been popular due to
its scalability, flexibility and also modifiability. IRC is a open protocol which
allow botmasters to modify and customize it to their demands. P2P-based
botnet uses recent P2P protocols which makes them more resilient against
single point of failure or takeover [31].

1.2 Botnet Life-cycle

According to Feily et al. [16] a typical botnet life-cycle can be described in five
stages: initial infection, secondary injection, connection, malicious command
and control, update and maintenance. These phases are described in the list
below:

Phase 1: The attacker finds and exploits target’s system vulnerabilities to
gain access to victim’s machine. Once a target’s weakness is found,
the attacker uses different infection techniques to proceed to the second
phase of injection.

Phase 2: The attacker runs script or binary program which downloads con-
trol interface for the botmaster from specific location usually via FTP
(File Transfer Protocol), HTTP or P2P protocols. When the control
interface is downloaded and installed on victim’s computer, the machine
becomes a part of a botnet. The bot application starts automatically
every time the computers reboots.

Phase 3: The bot establishes a reliable C&C channel with its botmaster.
When a bot is connected to the Internet, it will take commands from
botmaster to perform several malicious activities, described in the next
section.

Phase 4: The bot performs malicious activity. During this phase of the bot-
net life-cycle, a user can notice unusual behaviour of the infected ma-
chine as the computer consumes too much CPU (Central Processing
Unit) time or the computer sends too many packets without a reason.

Phase 5: The infected host downloads and updates bot application. Botmas-
ters maintain their army of bots and try to avoid detection by switching
protocols or performing server migration.

7

1. Botnet Phenomenon

1.3 Types of Attacks

In this section, I will provide a quick overview of the attack types a botnet
might perform. There are several serious threats a botnet might do. Most of
them are listed in Table 1.1.

Table 1.1: Malware Threats

Threat Description

Spam Sending malware or spam via e-mails

Dictionary attack Guessing user’s password to gain access

DDoS Distributed denial of service of selected servers

Identity fraud Stealing user’s identity for illegal activities

Distributed computing Using CPU’s performance to decrypt passwords

MiM attacks Man in the middle attacks to spread bot infection

Network scanning Attacking random addresses or scanning for open ports

1.4 Centralized Botnets Detection

Even though botnets represent a distinctive threat to the network security,
there are not many formal solutions to this problem. Most of the common
users have never heard about botnets. Recently, there were massive cyber-
attacks on US government websites after the biggest file sharing server had
been shutdown. Some of the common users might unconsciously had taken
a part in the attack as their computer sent massive amount of request to
the government servers. This is the only chance when the common user can
notice computer’s suspicious activity, because when a user’s computer gets
infected, it is hard, almost impossible, to seek and destroy bot application
without reinstalling an operating system. A protection of end devices against
botnets consists of genuine and updated operating system, anti-virus software
and properly secured network.

From the client side there is almost nothing a user can do to detect bot
application. Mostly, we place botnet detection into an ISP environment. We
can split a botnet detection into two significant groups. Active and passive.
Active solutions use honeypots [25] which work as a bait for the attackers.
The honeypot framework acts as a legitimate server or host with all features.
When an attacker scans network, he might encounter a honeypot. Using
the honeypot framework, botnet behaviour can be observed and studied to
improve detection techniques or to restrict botnet’s C&C server access to
the Internet. Although honeypots seem a reasonable solution, more common
practice are passive methods of detection.

In the survey of botnet detection techniques Feily et al. [16] distinguish
passive methods as signature-based, anomaly-base, DNS-based and mining-
based.

8

1.4. Centralized Botnets Detection

1.4.1 Signature-based Detection

Signature-based technique is very useful when a defender has knowledge of
botnet behaviour and signatures. It can be configured with a set of rules or
signatures to capture traffic which is considered suspicious. There are several
intrusion detection systems (IDS), but the most widely known is Snort [4]. It
is written as open source in the C language which makes it a perfect free traffic
monitoring tool for ISPs. Although signature-based method is very popular,
it only allows to detect known botnets based on their behaviour. For unknown
botnets different techniques had to be developed.

1.4.2 Anomaly-based Detection

Another technique based on capturing anomalies in network traffic such as
high volumes of traffic, traffic on unusual ports, unusual system behaviour
or high network latency is often used in network monitoring software. These
anomalies in traffic could indicate potential unknown botnet traffic and pres-
ence of malicious bots. Even though anomaly-based detection solves the issue
with unknown botnets, problem might occur with botnets which have not
been used for attacks yet, hence no anomalies can be detected in traffic.

In 2006, Binkley et al. [9] proposed an algorithm that combines IRC
tokenization with TCP-based anomaly detection. With the aid of IRC message
statistics they have created an effective system that detected client botnets.
However, the proposed algorithm could be have been easily bypassed using
simple encryption in IRC messages.

Suspicious encrypted traffic can be also detected based on flow data in
transport layer as it was proposed in [20]. Different anomaly-based detection
technique called Botsniffer [19] explores C&C channels in local area network.
It focuses on synchronization events and activities of bots. Comparison of all
detection techniques can be found in Table 1.2.

1.4.3 DNS-based Detection

DNS-based technique is similar to anomaly-based detection as it looks for
DNS traffic anomalies. When bots initiate a connection with C&C server
to get commands they perform DNS queries to locate and get IP address of
the C&C server. Dynamic DNS (DDNS) service allows that C&C servers
can often change location. In case that authorities block a C&C server at
a certain IP address, the botmaster can easily set up another C&C server
instance changing only the IP address. Hence, several methods to detect
botnets from DNS traffic have been proposed.

One of the technique relies on a mechanism to detect C&C servers based
on domain names with abnormally high or temporally concentrated DDNS
queries rate [14]. Similar approach is used in [21], but both of the techniques
can be confused by generating fake DNS queries. Another approach was based

9

1. Botnet Phenomenon

on abnormally recurring NXDOMAIN reply rates proposed in 2006 [28], which
led to less false positives events.

A promising technique was proposed in [26] which analysis DNSBL (DNS-
based Black-hole List) lookup traffic. Botmasters themselves perform lookup
against DNSBL to determine bot blacklist status. Unfortunately, distinguish-
ing botnet DNSBL queries from legitimate DNSBL lookup traffic leads to
higher false positives. Last DNS-based approach mentioned in this thesis
monitors group activity anomalies in DNS traffic [11]. This robust detection
technique is very effective regardless botnet type, on the other hand it requires
too much processing time.

1.4.4 Mining-based Detection

Since most of the anomalies occur in the phase of performing malicious activ-
ities such DDoS attacks, it is very difficult to monitor C&C botnet traffic in
the passive stage of bots. For these reasons, some of data mining techniques
have been developed to efficiently detect botnets, e.g. classification, clustering
or machine learning.

In [32] authors use machine learning technique based on flow characteris-
tic, but this approach requires access to payload which can be also encrypted.
Furthermore, it leads to higher false positive rate because of botnet diversity.
In [23] authors introduce multiple log correlation for C&C traffic detection.
This robust and effective solution is based on classification of an entire flow to
identify the botnet C&C traffic. It also does not require an access to payload
content. In [18] authors introduce Botminer which clusters similar commu-
nication traffic and similar malicious traffic. Then, it performs cross cluster
correlation to identify bots. This robust solution is protocol independent and
provides very low false positive rate.

1.4.5 Comparison of Botnet Detection Techniques

Most of the current botnet detection techniques work only on specific bot-
net C&C communication protocols and structures. As botnets change their
C&C communication architecture, these methods might become ineffective.
In summary, because of botnet structure and protocol diversity, botnet de-
tection becomes a very challenging task. In the Table 1.2, different detection
techniques can be compared as they have been mentioned in paragraphs above.

1.5 P2P Botnets Detection

In the section above, basic botnet characteristics and detection method have
been explained. Most of the proposed methods were developed in the first
decade of the twenty-first century which had been predominantly an era of

10

1.5. P2P Botnets Detection

Table 1.2: Brief comparison of botnet detection techniques (source: Feily et
al. [16]). The table contains seven columns denoted by a letter abbreviation.
T stands for detection technique, D for detection approach proposed in cited
article, U for unknown bot detection (generic approach), P for protocol inde-
pendence, E for encrypted bot detection, R for real-time detection and L for
low positive rate.

Technique (T) D U P E R L

Signature-based [4] No No No No No

[9] Yes No No No No
Anomaly-based [20] Yes No Yes No Yes

[19] Yes No Yes No Yes

[14] Yes No Yes No No
[21] Yes No Yes No No

DNS-based [28] Yes No Yes No Yes
[26] Yes No Yes Yes No
[11] Yes Yes Yes No Yes

[32] Yes No No No No
Mining-based [23] Yes Yes Yes No Yes

[18] Yes Yes Yes No Yes

traditional centralized botnets. As majority of these botnets had been shut-
down, attackers found a way to make their C&C communication almost invisi-
ble using P2P network topology. In this section, I will focus only on botnets of
a new era which use the P2P network topology. Also, I will describe different
detection techniques and analyze the chosen approach to the desired module.

1.5.1 P2P Networks

A P2P network is a type of decentralized and distributed network architec-
ture in which every individual host acts as both client and server. The hosts,
also called ”peers”, supplies and consumes resources at the same time inde-
pendently of central servers. Even though P2P networks had been described
and used in many applications, the concept was massively popularized by the
music-sharing application Napster [5]. This application was released in 1999
and it rapidly became popular as it has allowed to share music among its users
for free. After two years, the company ran into legal difficulties over copyright
infringement with music publishers.

P2P networks are implemented in very large scale of applications that
common users use every day, e.g. BitTorrent protocol which is used for file
sharing among peers, but also for the Internet piracy. Another example might
be Skype [6] to carry voice and video over IP protocols, or deflationary digital
currency like Bitcoin [7] which is really disputable these days.

11

1. Botnet Phenomenon

1.5.2 P2P Detection Techniques

Although detection of P2P botnet is more difficult than a detection of cen-
tralized botnets with single point of failure, several approaches have been pro-
posed. One of the solutions might be using a clustering based node behaviour
profiling approach. It captures the node behaviour clusters in a network and
uses formal statistical tests on popular behaviour clusters in this network [10].
Another approach presents a localization of botnet members based on the
unique communication patterns arising from their overlay topologies used for
command and control [24]. Also mining-based methods are used. One ap-
proach classifies network traffic behaviour during a given time interval using
machine learning classification technique [33]. Another approach proposes a
data mining scheme to capture anomalies from network traffic based on cer-
tain flow fields (e.g. packet size) [22]. All of these proposed techniques are
robust and provide low false positive rate.

12

Chapter 2

Analysis and Design

In this chapter, I will describe the chosen approach for P2P botnet detection
method which is the most suitable solution for the desired module. In 2010,
Coskun et al. proposed a simple efficient method to detect P2P botnets using
only flow records captured on a network border [13]. To confirm suggested
method, in [27] authors have critically reviewed the proposed approach with
the highest result of quality for the edge router monitoring. They also improve
this approach by presenting a computationally less complex algorithm. Among
all the other detection techniques, this fulfills all the needed requirements.

The proposed technique is based on the observation that peers of a P2P
botnet communicate with other peers in order to receive commands and up-
dates. P2P bots usually hide their C&C communication through the use of
various of protocols and encrypted packets which is an effective way not to be
discovered by mining-based or anomaly-based botnet detection methods. Bots
usually select their peers randomly and independently (i.e. unstructured P2P
topology). Nevertheless, one aspect can be hardly altered and that is a basic
communication flow. This flow record information is the only requirement
for graph-based botnet detection method which forms a Traffic Dispersion
Graph (TDG). IP addresses represent nodes and flow records between two
nodes within a certain monitored interval represent an edge. Such TDG can
be created in a typical ISP environment on an edge router to the Internet as
it is shown in Figure 2.1.

2.1 Mutual Contacts Graph

In [13] the mutual contact between two peers is defined as:

Although different bots may communicate with different peers, we
show that for P2P botnets with an unstructured topology, where
bots randomly pick peers to communicate with, there is a surpris-
ingly high probability that any given pair of P2P bots communi-

13

2. Analysis and Design

Figure 2.1: Monitored network (source: Ruehrup et al. [27])

cate with at least one common external bot during a given time
window. In other words, there is a significant probability a pair of
bots within a network have a mutual contact.

In order to create a Mutual Contacts Graph (MCG), these three steps
must be followed:

1. TDG must be retrieved from collecting flow records in given time period.
Nodes are represented captured hosts, both local and external, and edges
represent the communication among local and external peers.

2. TDG is filtered. Since almost every peer communicates with popular
servers such as search engines, social networks or news servers, a mutual
contact would be created among these peers. Hence a privacy-threshold
is set to solve this problem.

3. Final MCG is created by searching for mutual contacts of local hosts in
TDG. Once a mutual contact is found, an edge between two local hosts
will be weighted by number of mutual contacts among external peers.

All of these steps are illustrated in Figure 2.2. After a MCG is created,
the technique computes bot membership probability using a dye-pumping al-
gorithm which is described later in section 2.4.2. In order to detect suspi-
cious local hosts, this algorithm requires a list of known seed bots to perform
breadth-first search over the created MCG. As a result, a list of local bots,
which are above given probability threshold, is returned.

Briefly, mutual contacts graph-based technique satisfy multiple require-
ments which are summarized in [13] by following list:

• The proposed method is not an anomaly detection scheme and hence
does not require P2P bots to exhibit any overtly malicious activity.

14

2.2. Module Deployment

Figure 2.2: Creation of mutual contacts graph (source: Ruehrup et al. [27])

• Similarly, it is not a behaviour clustering algorithm and therefore does
not require any common behaviour exhibited by all the bots.

• It utilizes the pairwise mutual contact relationships between pairs of bot
peers, which arise due to P2P C&C communications.

• The proposed method is generic and does not depend on specific proper-
ties of specific botnets. Therefore, it does not require reverse engineering
bot binaries or C&C protocols.

• Contrary to existing graph-based network traffic analysis methods, the
proposed method does not require any access to backbone traffic. Mu-
tual contact relationships are deduced locally at an edge router.

Mutual contacts graph-based technique is the most appropriate method which
fulfills all the proposed requirements. I use mutual contacts graph-based tech-
nique as chosen approach for the implementation of the P2P botnet detection
module to a distributed monitoring system.

2.2 Module Deployment

In this section, I will briefly describe the future deployment of the proposed
P2P botnet detection module into the Nemea framework, the purpose of the
framework and how it works. This description is derived and cited from tech-
nical report [8] about the Nemea framework.

In order to make Internet safe place, many organizations around the world
try to avoid or detect malicious activity over their networks. CESNET [3]
is the NREN operator in the Czech Republic. CESNET maintains and pro-
vides the network connection to many Czech educational institutions such as

15

2. Analysis and Design

universities, research centers, etc. It also connects the network with foreign
countries via its network CESNET2.

Nemea is a framework developed in CESNET. It allows for an assembly
of a system for automated analysis of flow records gathered from network
monitoring processes in real time. The system consists of separate building
blocks called modules. The modules are interconnected by interfaces. All
interfaces are one-way only and they transfer data in the form of individual
records (e.g. flow records or records describing detected anomalies). Each
module is a standalone application, i.e. it runs as a separate system process.
The modules in the Nemea framework process data stream-wise, i.e. data
arrives to a module as individual records one by one [8].

The Nemea framework has been designed to detect network security threats
in CESNET2. Common approaches monitor and store data using network
probes and storage systems in a certain time period, thus the collected data
are analyzed after the given time period. In contrast, the Nemea process data
stream-wise without storing them on hard drives which creates a space for
real-time detection. The goal of this thesis is to find an ideal approach of P2P
botnet detection and implement it as a stream-wise module to the Nemea
framework.

2.3 Dynamic Libraries

In this section, I will explain a traffic analysis platform (TRAP) and dy-
namic unified record (UniRec) which have been developed by CESNET for
the Nemea framework. Both TRAP and UniRec are written in the C lan-
guage as dynamic libraries which are linked to the module. In brief, TRAP
serves as a communication interface between modules using TCP (Transport
Control Protocol) or Unix socket and UniRec record is used as a specific flow
data format which is sent over TRAP interfaces.

2.3.1 TRAP Library

In order to process data in stream-wise character, a shared object library called
libtrap has been created. It allows to efficiently send flow records with very
high throughput as vast volume of traffic flows in the network CESNET2.
TRAP architecture in Fig 2.3 consist of four hierarchical layers. The low-
est layer represents an interface type which may be TCP or Unix socket. A
buffering sub-layer aggregates multiple transfer request, thus it reduces time-
consuming operations. Higher sub-layer provides multiple components such as
time-out feature to set blocking or non-blocking calls on interfaces, multi-read
feature to receive flows on multiple interfaces in parallel or auto-flush features
which allows to prematurely send buffer after a time-out has elapsed on inter-
faces. The highest layer of libtrap library is API (Application Programming
Interface) to provide access to libtrap input and output interfaces in modules.

16

2.4. Module Algorithms

Figure 2.3: TRAP architecture (source: Bartoš et al. [8])

TRAP API enables rapid development of new Nemea modules and allows to
set various parameters to achieve the best throughput performance.

2.3.2 UniRec Protocol

In the Internet a various types of attacks can be observed whether it is con-
ducted by a botnet or by other way. To detect all malicious activities in the
CESNET2 network, the Nemea consists of various detection modules. Each
module requires a specific information to be sent on the interface. For this
reason the UniRec has been developed. UniRec allows to send various types
of data in a flexible format which can be dynamically created for the required
purposes. Currently, basic flow information uses the IPFIX (IP Flow Infor-
mation Export) format [12], which can be extended to contain more fields.
In Figure 2.4 we see that the flow record is divided in static and dynamic
part. In the static part, all the fields have static size. In the dynamic part,
module-specific fields can be created.

2.4 Module Algorithms

In this section, I will provide a theoretical background of a MCG and dye-
pumping algorithm used in the final module. I will be using algorithms and
formulas proposed by Coskun et al. [13] and reviewed by Ruehrup et al. [27]
confirming the functionality of the proposed technique. First, I will focus
on explanation of constructing a MCG. In the second part, I will describe a
dye-pumping algorithm.

17

2. Analysis and Design

Figure 2.4: UniRec flow record (source: Bartoš et al. [8])

2.4.1 MCG

As a first step, TDG must be created from captured flow records. For better
explanation of the MCG, I will use a simple scenario illustrated in Fig 2.5. In
given scenario Host A shares one mutual contact with Host B since they both
communicated with Host X. Similarly Host B is linked with Host C through
Host Y and Host Z. If Host A is a known bot member, then Host B becomes
suspicious as they have a mutual contact via Host X. Likewise, if Host B takes
part in a botnet, Host C is likely to be member as well. Since Host D and
Host E do not share a mutual contact with any suspicious host, they will
be considered as benign hosts. This approach uses the fact that P2P botnet
members receive commands from multiple peers.

It is the indisputable fact that next to P2P botnet traffic, legitimate traffic
will generate mutual contacts as well since almost every host in the network
communicates with popular sites such as social media or search engines. This
causes that every host is connected to most of the other hosts via those popular
mutual contacts. Therefore, if Host X has not communicated with almost
anyone within a local network and Host A is a known bot, then with very
high probability Host B is also a member of the same P2P botnet. Hence,
only external hosts which have communicated with less than k local hosts are
used to derive the MCG. Here, these contacts are referred as private mutual
contacts and k is the privacy-threshold.

Formally, a MCG is defined as MCG = (N,E) where N is set of local
hosts and E is set of edges indicating a private mutual contact. Each edge
has a capacity determined by the number of private mutual contacts between
corresponding hosts. If wij represent a capacity of the edge between two nodes

18

2.4. Module Algorithms

Figure 2.5: Illustration of P2P botnet communication and MCG. The local
network contains one seed bot (Host A), two potential bots (Host B and
C) and two benign hosts (Host D and E). The external network contains
three potential bots (Host X, Y and Z) and other legitimate hosts. The green
edges represent legitimate communication. The red edges represent suspicious
communication. The blue lines are edges indicating mutual contact.

Ni and Nj , then:

wij = wji = |S(Ni) ∩ S(Nj)|

where S(Ni) represents the set of private mutual contacts. The cardinality
of sets intersection determines the final capacity of the edge. If there is no
private mutual contact between nodes, no edge is created, i.e. wij = 0.

2.4.2 Dye-pumping Algorithm

To detect suspicious hosts in local network one additional the knowledge of a
seed bot is required. This information can be obtained from another detection
techniques or blacklist of known bots. When the MCG is constructed, the
designed algorithm dyes seed bot and spreads the dye over its mutual contacts.
The algorithm is called the dye-pumping algorithm [13].

In real environment few benign bots would receive some amount of dye due
to sharing of a mutual contact with P2P bots. This potentially result in false
positives. Intuitively, there is a very low probability that suspicious P2P bots
will be at a long distance from the seed bot. This unfavorable result can be
eliminated by setting a suitable threshold of pumping depth. As it has been
mentioned, the dye-pumping algorithm iteratively spreads dye over the MCG
from the seed node and selects the hosts which accumulates more dye than a
threshold. Original dye-pumping algorithm [13] uses the complete transition
matrix of the MCG, but a computationally less complex algorithm has been

19

2. Analysis and Design

proposed in [27]. This algorithm uses a BFS (Breadth-First Search) technique
to effectively spread dye from the seed bots to their neighbors.

If host shares a mutual contacts with many other hosts, it might indicate
another P2P application. It can result in false positives. For this reason and
for proportionately distributing the dye among neighbors, a dye-attraction
coefficient is specified. It is denoted by γij . It indicates what portion of the
dye arriving at node Ni will be distributed to node Nj in the next iteration.
It is computed as follows:

γij =
wij

(Dj)β

where Dj is the degree of node Nj (i.e. number of edges that Nj has) and
β is the node degree sensitivity coefficient. Thus, node with high degree
receives less dye than host with low degree.

The pseudo-code of the dye-pumping algorithm is given in (1). This
pseudo-code has been proposed in [27] and it it slightly modified. To un-
derstand the given algorithm, the explanation of variables is described in the
following list:

• GMC - mutual contacts graph

• B - set of seed bots

• C - current examined set

• T - next set to be examined

• V - visited set

• max depth - maximum depth in graph from seed bots

• w - sum of edge weights leading from the current code

• a - dye-attenuation factor

• γ - dye-attraction coefficient

• d - dye-distribution factor (default: 0.5)

20

2.4. Module Algorithms

Algorithm 1 Dye-pumping algorithm

1: function Find bots(GMC , B, max depth)
2: C ← B . set of seed bots forms the initial current set
3: V ← T ← ∅
4: foreach i ∈ N (N ⊂ GMC) do . set initial dye to all hosts
5: dye[i]← 0

6: foreach i ∈ B do . set initial dye to all seed bots
7: dye[i]← 1

8: for n← 1 to max depth do . search graph to maximum depth
9: if C ∈ ∅ then . break loop if current set is empty

10: break
11: foreach n ∈ C do . decrease dye, distribute later
12: dye old[i]← dye[i]
13: dye[i]← dye[i] ∗ (1− d)

14: foreach i ∈ C do
15: w ← 0
16: foreach j ∈ S(i) do
17: if j /∈ V then
18: a[j]← (Dj)

γ

19: w ← w + wij ∗ a[j]

20: if w = 0 then
21: dye[i]← dye[i]/(1− d)

22: foreach j ∈ S(i) do . distribute dye to neighbors
23: if j /∈ V then
24: dye[j]← dye[j] + dye old[i] ∗ d ∗ wij ∗ a[j]/w
25: if j /∈ C then
26: T ← T ∪ j
27: foreach i ∈ T do . remove hosts with not enough dye
28: sum dye← 0
29: foreach j ∈ S(i) do
30: if j ∈ C then
31: sum dye← sum dye+ dye[j]

32: if sum dye < dye threshold then
33: T ← T \ {i}
34: V ← V ∪ C
35: C ← T
36: T ← ∅
37: return all i ∈ V where dye[i] > dye threshold

21

Chapter 3

Realization

In this chapter, I will provide a description of parameters, functions, struc-
tures, algorithms and basic workflow used in the P2P botnet detection module.
The module is written in the low-level C language that allows high perfor-
mance and low resource consumption. As mentioned in the previous chapter,
the module is designed to be a part of the Nemea framework. It uses TRAP
interfaces to communicate with other modules. The module is run using CLI
as no GUI is required for handling the process.

3.1 Module Parameters

In order to achieve flexibility, the module can be initialized with various pa-
rameters specifying behavior and thresholds during the module initialization.
When changing the observation interval, the size of graph structure might
vary, thus the TDG will contain different number of hosts. To preserve the
module accuracy, privacy-threshold and minimum dye threshold have to be
modified. The module also allows to modify other values such as maximum
depth for the BFS algorithm, dye distribution factor or degree sensitivity coef-
ficient. The module can also log the entire graph structure to a file based on a
verbosity level, but in case of higher verbosity level combined with thousands
of hosts, the log file might consume a large amount of space on a hard-drive.
The list of all possible parameters in the manual page format is listed below:

-C COEF
Sets the degree sensitivity coefficient, 2 by default.

-D DEPTH
Sets the maximum depth of searching in the mutual contacts graph.

-F FAC
Set the dye distribution factor, 0.5 by default.

23

3. Realization

-h
Prints the help message.

-i IFC SPEC
Mandatory parameter to specify the interfaces.

-L LEVEL
Prints graph structure based on given verbosity level, range 1 to 5.

-p NUM
Shows progress by printing a dot every N flows.

-P P
Sets the bot probability dye threshold, range 0 to 1.

-u TMPLT
Specifies UniRec template expected on the input interface for flows.

-s
Sets the flag to print flow statistics, for testing purposes only.

-T LIMIT
Sets the privacy-threshold to remove popular external hosts.

-v
Sets the TRAP verbosity level.

3.2 Module Interfaces

In this section, I will describe module communication with other modules us-
ing interfaces. The module has two input interfaces and one output interface.
One input interface receives basic communication flow containing essential in-
formation in order to create TDG. This information consists of source and
destination IP address, protocol and direction of flow using UniRec protocol.
This information is used to create a TDG of communication. Another input
interface receives the list of known bots or suspicious hosts with given prob-
ability of being part of a botnet. This information is used as the set of seed
bots in dye-pumping algorithm. After the module finds all suspicious hosts
above minimum dye threshold, this information is sent on the output inter-
face to further evaluation. The illustration of module interfaces is shown in
Figure 3.1.

3.3 Module Structures

In this section, I will describe specific structures used by the module. The
structures help to store the information about parameters and communication
graphs. The module uses five specific structures described below:

24

3.3. Module Structures

Figure 3.1: Module input interfaces receive dynamic BASIC FLOW and static
BOTNET LIST. The BASIC FLOW has to contain at least these UniRec
fields: SRC IP, DST IP, PROTOCOL and DIR BIT FIELD. The BOT-
NET LIST contains only BOTNET BOT IP and BOTNET PROBABILITY
fields. Then, the module finds other suspicious bots and sends the information
in BOTNET LIST format on the output interface.

params t
This structure keeps all parameters received during the module initial-
ization. The list of parameters is provided in section 3.1. The structure
is passed to functions whenever it is required.

host loc t
This structure keeps all information about a local host. The structure
contains the host IP address for identification, the host status for BFS
algorithm, the host dye coefficient, number of accesses to the host, array
of pointers to external hosts with whom the host has communicated
and array of pointers to local hosts with whom the host shares mutual
contact and array of weights of the respective mutual contacts edges.

host ext t
This structure is similar to the local host structure, but it keeps only the
host IP address, number of accesses to the host and array of pointers to
local host with whom the the host has communicated.

node t
This auxiliary structure constructs a binary tree of hosts based by their
IP addresses. The node consists of left and right pointer based on a
single bit and the leaf contains a pointer to the host. The structure
is illustrated in Figure 3.2. The purpose of using the binary tree is
to effectively search arrays of hosts based on their IP addresses. The
time complexity of this search is Θ(32) and Θ(128) for IPv4 and IPv6,

25

3. Realization

respectively. The binary tree is sparse, hence only required nodes are
allocated.

graph t
This structure is essential to most of the functions used in the module. It
contains crucial information such as pointers to the root nodes of binary
trees distinguished by IP version, array of pointers to all local hosts,
array of pointers to all external hosts, array of pointers to suspicious
local hosts and array of pointers to suspicious external hosts.

Figure 3.2: IP binary tree to effectively search among hosts based on a IPv4
or IPv6 address. The search function uses bits in IP address to get to the leaf
which has a pointer to the host.

26

3.4. Module Workflow

3.4 Module Workflow

In this section, I will describe basic module workflow and functions which are
called during a runtime of the module. The principal handler of the module is
the function main() which sequentially calls individual functions. It also con-
trols all possible errors which might occur during the run of the program. The
flow chart of the module workflow is illustrated in Figure 3.3. The sequence
of called functions with brief description is written in the following list:

1. Function module init() is called to prepare module structure containing
information about number of interfaces needed for the module. In this
case, the module requires two input interfaces and one output interface.
Afterwards the TRAP interfaces are initialized using predefined macros.

2. Function params init() is called to set all needed input parameters into
single structure. The pointer to allocated structure is hand over to many
other functions. The list of parameters in provided in section 3.1.

3. Function get hosts() is called to receive all the traffic to be examined on
the first input interface. The traffic is filtered to support only TCP and
UDP (User Datagram Protocol) protocols. Based on the flow direction,
the function distinguishes local and external host with appropriate IP
address. Then, both local and external IP address are searched using the

Figure 3.3: Graphical illustration of the module workflow

27

3. Realization

binary tree structure. If the host does not exist, the function creates the
new host structure with new nodes in the binary tree based on the host’s
IP address. Afterwards the function creates an edge between source and
destination host in the TDG indicating mutual communication. After
a final record is received (data with zero size for testing purposes) or
given time period is exceeded, the function returns a graph structure
containing the created TDG.

4. Function get bots() is called to receive bot list or list of suspicious hosts
on the second input interface. The function seeks through the TDG if
the bot is present in the current time period. All local hosts found on the
bot list form the initial set of seed bots. In case of suspicious external
host, all local peers of the given host are also suspicious, thus they are
added to the initial set of seed bots. After the function returns the set
of seed bots, the main function checks if the set is not empty.

5. Function find privacy() is called to remove all popular external hosts
from the TDG above given privacy-threshold as they might result in
false positives. The function also removes all edges to the popular peer.

6. Function find contacts() is called to create the MCG from the given
TDG. The function connects all local hosts with an edge if both hosts
shares at least one mutual contact. The edge is weighted by number of
their mutual contacts.

7. Function find bots() is called to perform the dye-pumping algorithm.
The pseudo-code of the function is given in (1). The function returns
the list of suspicious hosts above the given threshold.

8. Function send bots() is called to send the list of suspicious hosts evalu-
ated by the dye-pumping algorithm. The function sends the list on the
output interface to be further examined. Another instance of the same
module can be connected to the output interface, thus it might reveal
the whole P2P botnet structure step-by-step.

9. Function print graph() is called to log the information about the graphs
based on a verbosity level. Brief level logs only the count of local, exter-
nal and suspicious hosts. Basic level in addition logs all suspicious hosts
(IP address and botnet probability) and local hosts (IP address, number
of peers and number of mutual contacts). Advanced levels in addition
add lists of peers (IP address or domain name if exists) and mutual con-
tacts to each local host (IP address and number of mutual contacts with
the given host). The function does not log the information by default
as it might be very space-consuming for large amount of hosts.

28

Chapter 4

Testing and Evaluation

In this chapter, I will test and evaluate the realized module for P2P botnet
detection. First, I will analyze the source code using dynamic analysis. The
most important part appears in the section 4.3 where the module is demon-
strated on the sample of real network traffic merged with synthetic P2P botnet
communication.

4.1 Source Code Dynamic Analysis

Since the module is memory-consuming for very large amount of hosts, ev-
ery memory allocation is checked for memory availability. Valgrind [29] has
been used to perform dynamic analysis of the module. Valgrind is a frame-
work for building dynamic analysis tools. All errors and memory leaks dis-
covered by Valgrind have been fixed during the development. Valgrind has
been executed with verbose parameter (-v) and full check for memory leaks
(--leak-check=full). The example of Valgrind output is shown in Fig-
ure 4.1.

4.2 Dataset

For the testing and the evaluation of the module, only simulated data has been
used. This data have been created by authors of the Malware Capture Facility
Project [17]. The project focuses on capturing, analyzing and publishing real
malware traffic. Datasets of the project have been captured on the Czech
Technical University (CTU) network.

The module has been tested with annotated dataset containing botnet
malware traffic. The dataset contains malicious P2P botnet communication
among normal background traffic. All the flows are annotated whether it is
a botnet or normal communication. The size of file with tested dataset is

29

4. Testing and Evaluation

==64160==

==64160== HEAP SUMMARY:

==64160== in use at exit: 0 bytes in 0 blocks

==64160== total heap usage: 6,099,832 allocs, 6,099,832 frees,

297,288,817 bytes allocated

==64160==

==64160== All heap blocks were freed -- no leaks are possible

==64160==

--64160-- used_suppression: 6 dl-hack3-cond-1

==64160==

==64160== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 6 from 6)

Figure 4.1: The output of Valgrind which has been used for the source code
dynamic analysis. There are no memory leaks even though almost 300 MB
have been allocated for the graph structures.

800 MB and it contains flow records in plain text. A sample of the dataset is
given in Figure 4.2.

Date flow start Durat Prot Src IP Addr:Port

2011-08-17 12:30:02.956 0.000 UDP 58.115.93.92:4056 ->

2011-08-17 12:30:02.956 0.000 TCP 147.32.84.165:21 ->

2011-08-17 12:30:02.958 0.085 TCP 87.98.230.229:80 ->

2011-08-17 12:30:02.958 0.008 TCP 147.32.86.195:40018 ->

Dst IP Addr:Port Flags Tos Packets Bytes Flows Label

147.32.86.165:12114 INT 0 1 60 1 Background

147.32.96.45:2049 RA_ 0 1 60 1 Botnet

147.32.86.20:3465 FPA_ 0 19 24441 1 Background

74.125.232.213:443 FPA_ 0 3 225 1 LEGITIMATE

Figure 4.2: A sample of the dataset containing annotated flow records. The
sample is split as the paper is not wide enough to print the whole line. The
dataset can be downloaded at the site of the project, botnet dataset 50 [17].

The dataset consists of 8,087,513 flow records. During the 5 hours of
observation, 115,415,230 packets have been transmitted forming a traffic in
size of 98 GB. If the flows are measured on the perimeter of a network, there
will be 334,887 local hosts and 344,977 external hosts. Unfortunately, this is a

30

4.3. Evaluation

misleading information because the direction flag is not provided within this
dataset, thus the hosts appear on both sides.

The dataset has been created by merging of normal traffic with synthetic
botnet topology. There are 10 bots in total which have been running on
the virtual machines. After the initialization of the seed bot, it infects the
other hosts with malware. The seed bot which infects other hosts has IP
address 147.32.84.165. The other hosts have IP addresses within a range from
147.32.84.191 to 147.32.84.193 and from 147.32.84.204 to 147.32.84.209. All
bots communicate with legitimate peers as well. The issue with this dataset
is that it contains only a few bots in comparison to amount of hosts.

4.3 Evaluation

For the testing purposes of the module, the data has been modified into
comma-separated values (CSV) using Unix shell script. After the modifi-
cation, the data has been converted to a binary file using special modules
from the Nemea framework.

In the given dataset environment, the proposed module achieved flawless
results. All bots have been successfully identified without any false positives.
However, only few bots have been participating in the communication. More
datasets can be found in [17], but they also contain the same set of bots.
Unfortunately, P2P botnet datasets are usually not publicly accessible. Hence,
it can not be confirmed that the module successfully detects P2P botnet C&C
communication with certain false positive rate. This issue is the main goal for
the future work.

The module has been running 84.05 seconds in average. The delay is
caused by massive amount of flow records in the dataset within a 5 hours
time interval. The process of creating TDG is the most time consuming for
thousands of hosts. The module is particularly designed for 5 minutes time
windows. All parameters used bye dye-pumping algorithm have been set to
default and the basic logging has been enabled (-L 2). The log output of the
module is shown in Figure 4.3.

The bot with IP address 147.32.84.165 has been sent as the initial seed
bot. From the output is clear that all the bots received some amount of dye
from the seed bot which is higher than given minimum dye-threshold. At the
bottom of the output, it is also shown that the seed bot shares 53 mutual
contacts. The seed bot has communicated with 2408 peers during the time
period. All the peers of local hosts have been filtered by the privacy-threshold,
thus the local hosts might have communicated with more external hosts than
the output shows. In this scenario, the choice of the seed bot is completely
independent. The module provides the same result regardless the initial seed
bot IP address.

31

4. Testing and Evaluation

Number of local hosts: 334887

Number of external hosts: 344977

Number of local suspicious bots: 10

Dye-pumping algorithm parameters:

* Privacy threshold: 128

* Breadth-first search depth: 3

* Degree sensitivity coefficient: 2.0

* Dye distribution factor: 0.50

* Minimum dye threshold: 0.01

* Distributed dye among hosts: 1.00

Known or suspicious local bots:

* Bot IP address: 147.32.84.165

* Bot dye: 0.500000

* Bot IP address: 147.32.84.208

* Bot dye: 0.069309

* Bot IP address: 147.32.84.207

* Bot dye: 0.069201

* Bot IP address: 147.32.84.206

* Bot dye: 0.065897

* Bot IP address: 147.32.84.192

* Bot dye: 0.065870

* Bot IP address: 147.32.84.191

* Bot dye: 0.061993

* Bot IP address: 147.32.84.193

* Bot dye: 0.059805

* Bot IP address: 147.32.84.204

* Bot dye: 0.039485

* Bot IP address: 147.32.84.205

* Bot dye: 0.033132

* Bot IP address: 147.32.84.209

* Bot dye: 0.030136

Local hosts:

* Local IP address: 147.32.84.165

* Number of peers: 2408

* Number of mutual contacts: 53

---------------------- output omitted ----------------------

Figure 4.3: Log output of the module.

32

Conclusion

The task of this bachelor’s thesis has been given to study the botnet phe-
nomenon, implement a module for P2P botnet detection and test the module
on real traffic data. This text has described the network security issue of
botnets and the process of module development for P2P botnet detection.

During the work on this project, I have studied and analyzed the botnet
issue in computer networks. In this thesis, I have described and compared
different botnet detection techniques proposed in the past. As the chosen ap-
proach, I have used the approach proposed in [13, 27] to create the generic
module for detection of suspicious C&C botnet communication within a cer-
tain time window. The approach uses graph-based detection method by cre-
ating mutual contacts graph and performing dye-pumping algorithm which
spreads the initial dye among suspicious neighbors.

The module is designed to be part of the Nemea framework which monitors
CESNET2 network. For the testing of the module, I have used the real network
data merged with synthetic P2P botnet topology [17]. The dataset has been
captured on the CTU network within the malware capture facility project.
Within this dataset, I have achieved excellent results. All the bots have been
detected using only one seed bot as the input information.

Future work

In the future work, I will focus on the final deployment to the Nemea frame-
work and testing the module in the real traffic environment. The module
depends on the initial information of seed bots, thus it requires to communi-
cate with another botnet detection module. Hence, I will try to implement
another P2P botnet detection module using different technique to form a re-
liable detection of suspicious hosts together.

There are also many other opportunities to improve the current module.
One of them is to lower memory resources as large amount of pointers are
allocated in order to create graph structures. As the speed of the network

33

Conclusion

grows every year, more flows have to examined at the same time. Finding
mutual contacts might be time consuming for higher privacy-threshold, thus
the function can be parallelized. Another great opportunity might be using
machine learning technique to set parameters in a automated way based on
the previous results.

34

Bibliography

[1] Free Software Foundation, Inc: GNU Project - Free Software Foundation
(FSF). 1983–2014. Available from: <http://www.gnu.org/software/>

[2] Verisign, Inc.: Verisign, Inc. 1995–2014. Available from: <http://

www.verisigninc.com>

[3] CESNET, z.s.p.o: CESNET, z.s.p.o. 1996–2014. Available from: <http:
//www.cesnet.cz>

[4] Sourcefire, Inc.: Snort. 1998-2014. Available from: <http://

www.snort.org>

[5] Napster, LLC: Napster. 1999–2011. Available from: <http://

www.napster.com>

[6] Skype Technologies S.A.: Skype. 2003–2014. Available from: <http://

www.skype.com>

[7] Satoshi Nakamoto: Bitcoin. 2009–2014. Available from: <http://

www.bitcoin.org>

[8] Bartoš, V.; Žádńık, M.; Čejka, T.: Nemea: Framework for stream-
wise analysis of network traffic. Technical report, CESNET, a.l.e., 2013.
Available from: <http://www.cesnet.cz/wp-content/uploads/2014/
02/trapnemea.pdf>

[9] Binkley, J. R.; Singh, S.: An algorithm for anomaly-based botnet detec-
tion. In Proceedings of USENIX Steps to Reducing Unwanted Traffic on
the Internet Workshop (SRUTI), 2006, pp. 43–48.

[10] Chang, S.; Daniels, T. E.: P2P botnet detection using behavior clustering
& statistical tests. In Proceedings of the 2nd ACM Workshop on Security
and Artificial Intelligence, ACM, 2009, pp. 23–30.

35

<http://www.gnu.org/software/>
<http://www.verisigninc.com>
<http://www.verisigninc.com>
<http://www.cesnet.cz>
<http://www.cesnet.cz>
<http://www.snort.org>
<http://www.snort.org>
<http://www. napster. com>
<http://www. napster. com>
<http://www.skype.com>
<http://www.skype.com>
<http://www.bitcoin.org>
<http://www.bitcoin.org>
<http://www.cesnet.cz/wp-content/uploads/2014/02/trapnemea.pdf>
<http://www.cesnet.cz/wp-content/uploads/2014/02/trapnemea.pdf>

Bibliography

[11] Choi, H.; Lee, H.; Lee, H.; etc.: Botnet detection by monitoring group
activities in DNS traffic. In Computer and Information Technology, 2007.
CIT 2007. 7th IEEE International Conference on, IEEE, 2007, pp. 715–
720.

[12] Claise, B.: Specification of the IP flow information export (IPFIX) pro-
tocol for the exchange of IP traffic flow information. 2008.

[13] Coskun, B.; Dietrich, S.; Memon, N.: Friends of an enemy: identifying
local members of peer-to-peer botnets using mutual contacts. In Pro-
ceedings of the 26th Annual Computer Security Applications Conference,
ACM, 2010, pp. 131–140.

[14] Dagon, D.: Botnet detection and response. In OARC workshop, volume
2005, 2005.

[15] Dittrich, D.; Dietrich, S.: Command and control structures in malware.
Usenix magazine, volume 32, no. 6, 2007.

[16] Feily, M.; Shahrestani, A.; Ramadass, S.: A survey of botnet and botnet
detection. In Emerging Security Information, Systems and Technologies,
2009. SECURWARE’09. Third International Conference on, IEEE, 2009,
pp. 268–273.

[17] Garćıa, S.; Uhĺı̌r, V.: Czech Technical University ATG Group: Mal-
ware Capture Facility Project. 2013–2014. Available from: <http://

mcfp.weebly.com>

[18] Gu, G.; Perdisci, R.; Zhang, J.; etc.: BotMiner: Clustering Analysis of
Network Traffic for Protocol-and Structure-Independent Botnet Detec-
tion. In USENIX Security Symposium, 2008, pp. 139–154.

[19] Gu, G.; Zhang, J.; Lee, W.: BotSniffer: Detecting botnet command and
control channels in network traffic. 2008.

[20] Karasaridis, A.; Rexroad, B.; Hoeflin, D.: Wide-scale botnet detection
and characterization. In Proceedings of the first conference on First Work-
shop on Hot Topics in Understanding Botnets, volume 7, Cambridge, MA,
2007.

[21] Kristoff, J.: Botnets. In 32nd Meeting of the North American Network
Operators Group, 2004.

[22] Liao, W.-H.; Chang, C.-C.: Peer to peer botnet detection using data min-
ing scheme. In Internet Technology and Applications, 2010 International
Conference on, IEEE, 2010, pp. 1–4.

36

<http://mcfp.weebly.com>
<http://mcfp.weebly.com>

Bibliography

[23] Masud, M. M.; Al-Khateeb, T.; Khan, L.; etc.: Flow-based identification
of botnet traffic by mining multiple log files. In Distributed Framework
and Applications, 2008. DFmA 2008. First International Conference on,
IEEE, 2008, pp. 200–206.

[24] Nagaraja, S.; Mittal, P.; Hong, C.-Y.; etc.: BotGrep: Finding P2P Bots
with Structured Graph Analysis. In USENIX Security Symposium, 2010,
pp. 95–110.

[25] Provos, N.: A Virtual Honeypot Framework. In USENIX Security Sym-
posium, volume 173, 2004.

[26] Ramachandran, A.; Feamster, N.; Dagon, D.: Revealing botnet mem-
bership using DNSBL counter-intelligence. Proc. 2nd USENIX Steps to
Reducing Unwanted Traffic on the Internet, 2006: pp. 49–54.

[27] Ruehrup, S.; Urbano, P.; Berger, A.; etc.: Botnet detection revisited:
Theory and practice of finding malicious P2P networks via Internet con-
nection graphs. In Computer Communications Workshops (INFOCOM
WKSHPS), 2013 IEEE Conference on, IEEE, 2013, pp. 435–440.

[28] Schonewille, A.; van Helmond, D.-J.: The domain name service as an
IDS. Research Project for the Master System-and Network Engineering
at the University of Amsterdam, 2006.

[29] Seward, J.; Nethercote, N.; Fitzhardinge, J.: Valgrind, an
open-source memory debugger for x86-GNU/Linux. URL:
http://www.ukuug.org/events/linux2002/papers/html/valgrind, 2004.

[30] Steggink, M.; Idziejczak, I.: Detection of peer-to-peer botnets. University
of Amsterdam, February, 2008.

[31] Stone-Gross, B.; Cova, M.; Gilbert, B.; etc.: Analysis of a botnet
takeover. Security & Privacy, IEEE, volume 9, no. 1, 2011: pp. 64–72.

[32] Strayer, W. T.; Lapsely, D.; Walsh, R.; etc.: Botnet detection based on
network behavior. In Botnet Detection, Springer, 2008, pp. 1–24.

[33] Zhao, D.; Traore, I.; Ghorbani, A.; etc.: Peer to Peer Botnet Detection
Based on Flow Intervals. In Information Security and Privacy Research,
Springer, 2012, pp. 87–102.

37

Appendix A

Acronyms

API Application Programming Interface

BFS Breadth-First Search

C&C Command and Control

CLI Command-Line Interface

CPU Central Processing Unit

CTU Czech Technical University

DDoS Distributed Denial of Service

DNS Domain Name System

DNSBL DNS-based Black-hole List

FTP File Transfer Protocol

GUI Graphical User Interface

IDS Intrusion Detection System

IPFIX IP Flow Information Export

IRC Internet Relay Chat

ISP Internet Service Provider

MCG Mutual Contacts Graph

MiM Man in the Middle

Nemea Network Measurement Analysis

NREN National Research and Education Network

39

A. Acronyms

P2P Peer-to-peer

TCP Transport Control Protocol

TDG Traffic Dispersion Graph

TRAP TRaffic Analysis Platform

UDP User Datagram Protocol

UniRec Unified Record

40

Appendix B

Installation Manual

This installation manual has two sections. In the first section, there are de-
scribed dependencies of the module. In the second section, Unix commands
are provided to successfully install the module.

B.1 Dependencies

The module depends on some Nemea libraries mentioned in section 2.3. In
order to compile the module for P2P botnet detection, some Nemea libraries
have to be installed. Current version of the Nemea framework can be down-
loaded at https://www.liberouter.org/technologies/nemea/. This is the
list of the module dependencies:

• libtrap

• libunirec

• libm

B.2 Module installation

The module has been created using the GNU build system also known as
Autotools [1]. It is a suite of tools for build automation. The Autotools
system makes the C programs portable among Unix-like systems. It is simple
to use and configure. To successfully install the module, unpack the source
codes located in /src directory on the CD. Afterwards, in the source directory
of the module type following commands:

./configure

make

make install

41

https://www.liberouter.org/technologies/nemea/

Appendix C

Contents of Enclosed CD

doc..documentation folder
doc.tar.gz.........archive with generated documentation in HTML
task.pdf.................................thesis task in PDF format
thesis.pdf thesis text in PDF format

readme.txt...........................file with CD contents description
src...directory of source codes

src.tar.gz.................archive with the module implementation
thesis.tar.gzLATEX source codes of the thesis

Figure C.1: Contents of enclosed CD

43

	Introduction
	Goals of the Thesis
	List of Module Requirements
	Text Structure of the Thesis

	Botnet Phenomenon
	Botnet Characteristics
	Botnet Life-cycle
	Types of Attacks
	Centralized Botnets Detection
	P2P Botnets Detection

	Analysis and Design
	Mutual Contacts Graph
	Module Deployment
	Dynamic Libraries
	Module Algorithms

	Realization
	Module Parameters
	Module Interfaces
	Module Structures
	Module Workflow

	Testing and Evaluation
	Source Code Dynamic Analysis
	Dataset
	Evaluation

	Conclusion
	Future work

	Bibliography
	Acronyms
	Installation Manual
	Dependencies
	Module installation

	Contents of Enclosed CD

