
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

QUIC traffic dataset creation and analysis

Bc. Andrej Lukačovič

Ing. Karel Hynek, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2024/2025

Instructions

Study QUIC protocol, its handshake procedures, and information exchanged during the 

handshake. Create an ipfixprobe [1] plugin capable of QUIC handshake information 

extraction from real-world traffic. In cooperation with the thesis supervisor, create a 

dataset of real QUIC traffic using the implemented ipfixprobe plugin. Analyze the dataset 

and provide insight about the current state of QUIC in the network. 

[1] https://github.com/CESNET/ipfixprobe/

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2024 in Prague.





Master’s thesis

QUIC TRAFFIC DATASET
CREATION AND
ANALYSIS

Bc. Andrej Lukačovič

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Karel Hynek, Ph.D.
May 9, 2024



Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Andrej Lukačovič. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Lukačovič Andrej. QUIC traffic dataset creation and analysis. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2024.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviation List x

Introduction 1

1 State of the Art 3
1.1 QUIC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Packet protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.7 Advantages of the QUIC Protocol . . . . . . . . . . . . . . . . . . . . . . 15

1.2 QUIC-TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Server Name Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 User Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Network monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Flow monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Deep packet inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 IPFIXProbe QUIC Plugin 19
2.1 Variable-Length Integer Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Version specific Initial Salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Initial Packet Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Extract Header Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Initial Secrets Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Client Initial Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 AES-GCM Initial Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Header Protection secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Reverting Header Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Sample Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Packet Number Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Packet Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Reverting Packet Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Assemble Packet Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Obtain TLS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Finalized Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



iv Contents

3 Analysis 33
3.1 State of the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 User Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Server Name Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 QUIC Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 User Agent Model Numbers 39
4.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Aggregating flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 User Agent and Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 User Agent as Unique Identifier . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 User Agent and SNI as Unique Identifier . . . . . . . . . . . . . . . . . . . 40

4.3 Evaluation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Folium Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.3 Grid Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Finding Patterns Programmatically . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.1 Row-wise Autocorrelation with Shift . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Window matching with correlation . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Conclusion 49

Contents of attached medium 53



List of Figures

1.1 HTTP/1 and HTTP/2 stack compared to HTTP/3 stack . . . . . . . . . . . . . 4
1.2 Example 1-RTT Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 QUIC protocol and the TLS information exchange . . . . . . . . . . . . . . . . . 6
1.4 Example 0-RTT Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Initial Packet with long header format . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 1-RTT Packet with short Header format . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Authenticated Encryption with Associated Data . . . . . . . . . . . . . . . . . . 10
1.8 Generic Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Structure of CRYPTO Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Structure of Stream Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.11 QUIC Layers and TLS [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Structure of Server Name Indication extension [14] . . . . . . . . . . . . . . . . . 16
1.13 Example of the User-Agent field content . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Comparison of Cronet and Chrome related User Agents . . . . . . . . . . . . . . 34
3.2 most common Android related User Agents . . . . . . . . . . . . . . . . . . . . . 34
3.3 most common Mac related User Agents . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 most common iPhone and iPad related User Agents . . . . . . . . . . . . . . . . 36
3.5 most common Windows related User Agents . . . . . . . . . . . . . . . . . . . . . 37
3.6 most common Linux related User Agents . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 most common Server Name Indications . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Heatmap Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Heatmap activity visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Grid visualization by days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Grid visualization by day-hour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Grid visualization by day-hour with filled spaces . . . . . . . . . . . . . . . . . . 45
4.6 Windows NT grid visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 The most correlated window for the first row based on the median . . . . . . . . 47
4.8 The most correlated window for the fifth row based on the median . . . . . . . . 47
4.9 The most correlated window for the first row in the grid visualization with filled

spaces based on the median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

List of Tables

1.1 Long Packet type fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Different cryptographic levels by Packet Type . . . . . . . . . . . . . . . . . . . . 10

v



1.3 Frame Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 IPFIXProbe basic fields exported . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Summary of Variable Integer Encoding . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 New IPFIXProbe fields introduced by the QUIC Plugin . . . . . . . . . . . . . . 31

3.1 Initial Flow Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Quic Version occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

List of code listings

2.1 QUICParser::quic initial checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 QUICParser::quic parse header . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 pseudo-code of Initial Secret derivation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 pseudo-code of Client Initial Secrets derivation . . . . . . . . . . . . . . . . . . . 22
2.5 pseudo-code of Key and Initialization Vector derivation . . . . . . . . . . . . . . 22
2.6 pseudo-code of Header Protection Key derivation . . . . . . . . . . . . . . . . . . 23
2.7 pseudo-code of Header Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 QUICParser::quic decrypt header . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 QUICParser::quic decrypt header . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 QUICParser::quic decrypt header . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11 QUICParser::quic decrypt header . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 QUICParser::quic decrypt header . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.13 QUICParser::quic decrypt payload . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.14 QUICParser::quic decrypt payload . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.15 QUICParser::quic decrypt payload . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.16 QUICParser::quic reassemble frames . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 QUICParser::quic copy crypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.18 QUICParser::quic parse tls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19 QUICParser::get quic user agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



I would like to express my deepest gratitude to my thesis supervisor,
Ing. Karel Hynek, for his expertise, understanding, and patience.
Due to our regular consultations, discussions, and meetings, I was
able to finish this work. I would also like to thank my parents for
giving me the opportunity to study at Czech Technical University.
Additionally, big thanks go to my girlfriend, who was my biggest
support during the evaluation of this thesis.

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-
exclusive authorization (licence) to utilize this thesis, including all computer programs that are
part of it or attached to it and all documentation thereof (hereinafter collectively referred to as
the ”Work”), to any and all persons who wish to use the Work. Such persons are entitled to
use the Work in any manner that does not diminish the value of the Work and for any purpose
(including use for profit). This authorisation is unlimited in time, territory and quantity.

In Prague on May 9, 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii



Abstract

The primary focus of this thesis is the creation of a QUIC plugin for the IPFIXProbe flow
exporting tool, which is capable of decrypting and obtaining various fields from the initial stage
of QUIC communication. In a later stage, we also include an analysis that was performed on the
dataset created by the plugin. Firstly a simple analysis was conducted on the captured data.
Subsequently, we formulated a hypothesis suggesting that the User Agent and Server Name
Indication pair can be used as a unique identifier. The dataset created and partially analyzed in
this thesis has been published in Data-in-Brief Journal article.

Keywords QUIC, TLS Handshake, User Agent, Server Name Indication, Pattern Matching,
Network Traffic Analysis, Cesnet, IPFIXProbe

Abstrakt

Hlavným ciel’om tejto práce je vytvorenie QUIC plugin pre nástroj IPFIXProbe exportujúci
siet’ové toky, ktorý bude schopný obohatit’ tieto toky o dešifrované dáta z počiatočnej fázy QUIC
komunikácie. V neskoršej časti práce zároveň zahrnieme analýzu ktorá je prevedená na datasete
ktorý vznikol na základe vytvoreného pluginu. Analýza sa v prinćıpe deĺı do dvoch časti. Najskôr
poṕı̌seme jednoduché štatistky nazbieraných dát. Následne vyslov́ıme hypotézu ktorá navrhuje
použitie User Agent a Server Name Indication pola ako unikátny identifikátor pre jednotlivé toky.
Čast datasetu ktorý vznikol ako výsledok tejto práce je publikovaný ako článok v Data-in-Brief
žurnály.

Kĺıčová slova QUIC, TLS Handshake, User Agent, Server Name Indication, Zhoda vzorov,
Analýza siet’ovej komunikácie, Cesnet, IPFIXProbe

ix



Abbreviation List

AEAD Authenticated encryption with associated data
AES Advanced Encryption Standard

CERT Certificate
CH Client Hello
CV Certificate Verify

DCID Destination Connection ID
DPI Deep Packet Inspection

ECB Electronic codebook
EE Encrypted Extensions

GCM Galois/Counter Mode
HMAC Hash-based message authentication code
HKDF HMAC-based Extract-and-Expand Key Derivation Function
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IKM Input keying material

IP Internet Protocol
IPFIX Internet Protocol Flow Information Export

ISP Internet Service Provider
Mac Macintosh

MAC Medium Access Control
NAT Network address translation

Nemea Network Measurements Analysis
PRK Pseudorandom key
RFC Request for Comments
RTT Round-trip time

SCID Source Connection ID
SH Server Hello

SNI Server Name Indication
TCP Transmission Control Protocol
TLS Transport Layer Security

UDP User Datagram Protocol
UA User Agent

XOR Exclusive or

x



Introduction

The rapid evolution of the internet has necessitated the development of more efficient commu-
nication protocols to meet the growing demand for speed and security. One such advancement
is the QUIC protocol, which represents a significant leap forward in reducing latency and im-
proving the overall performance of web applications. Originally developed by Google and later
adopted by the Internet Engineering Task Force (IETF) for further refinement, QUIC integrates
enhanced features such as multiplexed connections and streamlined connection establishment,
setting it apart from its predecessors like TCP and UDP.

QUIC also incorporates TLS in its network stack. In this context, TLS is responsible for
establishing secrets, which are then utilized by QUIC to encrypt packets. Since the TLS protocol
facilitates the exchange of these secrets, it is necessary for QUIC to include in its initial packets
the messages required for the exchange of TLS protocol secrets. One such field is the Server Name
Indication. Another field, that is not specific to the TLS protocol, is the User Agent. Although
this field is marked as deprecated and appears unused in versions of Chrome higher than 100, it
remains available in earlier versions. In network communications, where vast amounts of data
are involved, analysis can be challenging due to data overlap and the sheer volume of data can
affect the overall analysis. However, by limiting the scope of the data—specifically to only parts
of network communication containing some data—we can achieve interesting results because we
are working with more unique data.

As the Google Transparency Report states1, more than 95% of communications transmitted
via the QUIC protocol are encrypted. However, in this work, we introduce a QUIC plugin for the
monitoring system IPFIXProbe, which can decrypt a portion of this encrypted communication
based on publicly known secrets. After decryption, we gain access to all the initial information
exchanged between the server and client when establishing a connection.

We believe that, despite this, the data are not particularly sensitive and do not contain any
specific application-related information. Based on them, we can conduct a deeper analysis. In the
final part of the work, we attempt to present a hypothesis: by combining Server Name Indication
and User Agent, we can create a sort of unique identifier. This can then be used to uniquely
identify network flows, ultimately aiming to track the activity and location of individual users.

First, in Chapter 1, we will explore the State of the Art of the QUIC Protocol. This chapter
contains all the necessary information that will assist us in subsequent chapters. We will build a
strong theoretical foundation on the fundamentals of the QUIC protocol, and we will also touch
on the fundamentals of TLS, as these are also necessary.

In Chapter 2, we will go step-by-step through the implementation of the IPFIXProbe QUIC
Plugin, which is capable of decrypting and extracting fields from the initial packets of the QUIC
Protocol. At the end of the chapter, we will also mention the QUIC Dataset, which is later used
in the analysis. Moreover, part of the dataset was also published in the Data in Brief journal.

1https://transparencyreport.google.com/https/overview

1

https://transparencyreport.google.com/https/overview


2 Introduction

The last two chapters are dedicated to the initial analysis of the created dataset and a deeper
dive into the analyzed data. Chapter 3 contains an analysis of the captured flows; we examined
the contents of the QUIC Protocol initial packets and evaluated the contents of the Server Name
Indication and User Agent fields. Chapter 4 goes a bit further; we make a hypothesis that the
User Agent and Server Name Indication can be used to uniquely identify flows.



Chapter 1

State of the Art

1.1 QUIC Protocol

QUIC is a universal transport layer protocol, as described by Jim Roskind of Google in his 2012
article [1]. In 2013 [2], it was introduced to the public and the Internet Engineering Task Force1

(IETF). Despite the name QUIC, which many might consider an acronym or abbreviation, this is
not the case. The original proposal [1] by J. Roskind indeed named QUIC as Quick UDP Internet
Connections, but later IETF documentation does not associate this name with an acronym. In
2015, a proposal was submitted [3] for standardization to the IETF community. In 2016, a
research team was formed under the IETF, and the first Internet-Draft [4] was issued, which to
this day, evolved into 35 versions. Finally, at the time of writing, there is an Proposed Standard
- RFC called QUIC: A UDP-Based Multiplexed and Secure Transport [5]

Today, it is primarily associated with the term HTTP/3. The combination of HTTP/2 and
QUIC led to the new designation HTTP/3 [6]. The QUIC protocol also experience adoption
in the Web3 space, more precisely, currently one of the fastest blockchain talks about QUIC
Protocol in its Networking Stack 2

In Figure 1.1, we can see a comparison of HTTP/3, which employs QUIC in conjunction with
UDP at the transport layer, and HTTP/2, which uses TCP. QUIC has several key advantages
that can continue to advance it to the forefront over other transport protocols. These advantages
will be described in a later Section. First, however, we need to explain a few basic terms and
concepts.

1.1.1 Connection
As stated within the latest RFC 9000 [5], a QUIC connection is a shared state between a client
and a server.

Every connection initiates with a handshake phase, during which the two parties create a
shared secret through the QUIC-TLS [8] Cryptographic Handshake protocol and decide on the
application protocol. This handshake ensures both endpoints are ready to communicate and sets
the parameters for the connection.

1https://www.ietf.org/
2https://www.helius.dev/blog/all-you-need-to-know-about-solana-and-quic

3

https://www.ietf.org/
https://www.helius.dev/blog/all-you-need-to-know-about-solana-and-quic


4 State of the Art

Figure 1.1 HTTP/1 and HTTP/2 stack compared to HTTP/3 stack [7]

1.1.1.1 Connection Identifiers

Each connection has a collection of identifiers, or IDs, each capable of identification the particular
connection. These connection IDs are chosen independently by the endpoints; each endpoint picks
the connection IDs that its counterpart utilizes. The primary function of a connection IDs is to
ensure that changes in addressing at lower protocol layers (UDP, IP) do not cause packets for a
QUIC connection to be delivered to the wrong endpoint. These Connection Identifiers are also,
among other things, used during the derivation process of Initial Secrets, which are essential for
extracting data from the Connection Initialization.

Connection IDs used within the QUIC protocol:

Source Connection ID (SCID)

Destination Connection ID (DCID)

1.1.2 Handshake
QUIC utilizes a combination of cryptographic [8] and transport [5] handshake to enhance se-
curity and to reduce the overhead involved in establishing a connection. For the transmission
of critical cryptographic secrets during the initialization process, QUIC uses CRYPTO frames,
which contain information from the TLS 1.3 protocol. The RFC 9001 [8] describes that the
TLS protocol offers two different types of handshakes for better security and efficiency in the
connection setup.

1-RTT (Round-trip time): A handshake in which the client (connection initiator) can send
data only after completing one full cycle of exchanging the necessary initial information. The
server can send data immediately after receiving the first Initial packet or even before the
final message about the client’s identity arrives, see Figure 1.2.

0-RTT (Round-trip time): A handshake in which the client uses information provided by the
server in a previous connection to send data right at the initialization of a new connection, see
Figure 1.4. This way, the overhead for transmission, i.e., latency, is reduced, but it exposes
a risk for so-called replay attacks.



QUIC Protocol 5

1.1.2.1 1-RTT Hanshake
In Figure 1.2, we see the structure of how a typical 1-RTT handshake might look. During this
process, it is possible to insert several QUIC packets into a UDP datagram, ensuring that the
entire connection initialization can be performed by transmitting only 4 packets. Each line of
the process consists of the type of packet being sent from the endpoint, the packet number, the
frame located in the sent packet, and brief information about what the frame contains.

Client Server

Initial[0]: Crypto[CH] →

← (Version Negotiation)
← (Retry)

Initial[0]: Crypto[SH] ACK[0]
Handshake[0]: Crypto[EE, CERT, CV, FIN]

← 1-RTT[0]: STREAM[data]

Initial[1]: ACK[0]
Handshake[0]: CRYPTO[FIN], ACK[0]
1-RTT[0]: STREAM[data], ACK[0] →

Handshake[1]: ACK[0]
← 1-RTT[1]: Handshake Done, STREAM[data], ACK[0]

Figure 1.2 Example 1-RTT Handshake [5]

1. In the first step, the client sends an Initial packet. In parentheses, we see the packet number,
followed by a CRYPTO frame that contains the Client Hello message. This packet also
includes the Destination Connection ID of the endpoint.

2. The server can respond in several ways:

Version Negotiation - this method of response indicates to the client whether the server
supports the version of the QUIC protocol that the client is using. The size of the first
packet determines whether the server will send a Version Negotiation packet or not.
Retry - After the server receives the Client Hello message, it may request address veri-
fication. This request is a special Retry packet type containing a Token that the server
sends to the client. The client must then send the Token in every Initial packet in that
connection.
It can proceed to establish the connection by sending the necessary information and pa-
rameters to the client, which are listed in RFC 8446 [9]. The TLS protocol takes care of
these details, managing the exchange of keys, certificates, etc. Figure 1.3 shows an example
of such communication. The QUIC protocol receives information from the TLS protocol,
which handles the exchange of keys, certificates, and so on. Subsequently, it secures this
information and sends it. At this point, the server can start sending application data to
the client, these data are stored in 1-RTT packets and are fully secured.



6 State of the Art

QUIC TLS

Handshake Messages

Validate 0-RTT Parameters

0-RTT Keys

Handshake Keys

1-RTT Keys

Handshake Done

QUIC Packet
Protection

Protected PacketProtect

Figure 1.3 QUIC protocol and TLS information exchange [8]

3. The client can respond in several ways depending on the server’s response:

If the server does not support the version used by the client in the first Initial packet, the
client can either send a new Initial packet of a version that is supported by both endpoints
or terminate the connection attempt because they do not support the same version.
If the client receives a Retry packet, it is necessary to use the Token contained in this packet
in every subsequent Initial packet of that connection. Therefore, the client is expected to
resend the Initial packet containing the Token that the server sent.
It can continue to establish the connection by sending the necessary information back to
the server. In this case, these are mainly confirmation information for the Handshake.
Also, at this stage of the connection initialization, the client can send application data
stored in 1-RTT packets with strong security.

4. In the final step, the Handshake is almost complete. The server sends a confirmation and
a message of completion. Likewise, it can send application data, as in point 3. After this
response, the initialization is completed, and communication can freely proceed.

1.1.2.2 0-RTT Handshake
Figure 1.4 shows how a 0-RTT Handshake can proceed. The most significant difference compared
to 1-RTT, which contributes to increased speed or reduced latency, is that the client can send data
immediately after sending the Initial packet. This fact relies on parameters that were already
agreed upon between the client and server in a previous connection. The data sent by the client



QUIC Protocol 7

during the connection initialization are contained in a 0-RTT packet type. The individual steps
of establishing a connection are described in more detail in Section 1.1.2.1

Client Server

Initial[0]: Crypto[CH] →
0-RTT[0]: STREAM[data] →

← (Version Negotiation)
← (Retry)

Initial[0]: Crypto[SH] ACK[0]
Handshake[0]: Crypto[EE, CERT, CV, FIN]

← 1-RTT[0]: STREAM[data], ACK[0]

Initial[1]: ACK[0]
Handshake[0]: CRYPTO[FIN], ACK[0]
1-RTT[1]: STREAM[data], ACK[0] →

Handshake[1]: ACK[0]
← 1-RTT[1]: Handshake Done, STREAM[data], ACK[1]

Figure 1.4 Example 0-RTT Handshake [5]

1.1.3 Packets
Endpoints using the QUIC protocol communicate within a connection using packets. Packets
are processed and then inserted into UDP datagrams. They have a simple structure containing
a header and one or more frames. The RFC 9000 [5] describes that packets are divided based
on those with long and short headers.

Packets with a long header are used during connection establishment.

Initial: contain the first messages for connection initialization.

0-RTT: in this context, it refers to a packet type, not a handshake type, carrying application
data that are transferred during the initialization of a connection.

Retry: contain a Token created by the server.

Handshake: carry information related to the handshake, mainly shared secrets.

Version Negotiation: used only by the server, they contain messages about the agreement
on the used version.

Packets with a short header are designed for minimal overhead and are used after a
connection is established and 1-RTT keys are available.

1-RTT: in this context, it refers to a packet type, not a handshake type, it is the only type of
packet that has a short header, used for data transmission after the connection is established
(partially also during establishment, see Figure 1.2).



8 State of the Art

Initial Packet
# Header
Header Form (1) = 1,
Fixed Bit (1) = 1,
Long Packet Type (2) = 0,
Reserved Bits (2), # Protected
Packet Number Length (2), # Protected
Version (32),
Destination Connection ID Length (8),
Destination Connection ID (0..160),
Source Connection ID Length (8),
Source Connection ID (0..160),
Token Length (i),
Token (..),
Length (i),
Packet Number (8..32), # Protected
# Payload
Protected Payload (0..24), # Skipped Part
Protected Payload (128), # Sampled Part
Protected Payload (..), # Remained

Figure 1.5 Initial Packet with long header format [10]

The short header is implemented primarily to achieve the smallest possible overhead. Thus,
after the connection has been initialized and the necessary information for data transmission
has been agreed upon, it is no longer necessary to carry a large amount of information in the
header see Figure 1.6. For the Long Header format in Figure 1.5, certain parts of the header are
masked to maintain integrity and increase security. The method of masking is briefly described
in Section 1.1.4.3.

In Table 1.1, we can see how Long Header Packet types are identified. A Version Negotiation
packet is inherently not version specific. Upon receipt by a client, it will be identified as a Version
Negotiation packet based on the Version field having a value of 0.

Table 1.1 Long Packet type fields [5]

Long Packet Type field Packet Type
0x00 Initial
0x01 0-RTT
0x03 Retry
0x02 Handshake

- Version Negotiation

1.1.4 Packet protection
In the preceding section, we explained that QUIC Packets are categorized into two groups based
on the Header they employ. However, as shown in the RFC 9000 [5], we can also divide the
Packets based on the used Packet Protection.

As with TLS over TCP, QUIC protects packets with keys derived from the TLS handshake,
using the AEAD algorithm [11] negotiated by TLS [8]. We will get into a more detailed expla-



QUIC Protocol 9

1-RTT paket
# Header
Header Form (1) = 0,
Fixed Bit (1) = 1,
Spin Bit (1),
Reserved Bits (2),
Key Phase (1),
Packet Number Length (2),
Destination Connection ID (0..160),
Packet Number (8..32),
# Payload
Packet Payload (8..),

Figure 1.6 1-RTT Packet with short header format [10]

nation of how the Packet Protection for Initial packets works and how are the Initial secrets
derived in the Section 2.5 of Chapter 2.

However, to briefly introduce the logic, QUIC packets have varying protections depending on
their type [8]:

Version Negotiation packets have no cryptographic protection.

Retry packets use AEAD AES 128 GCM to provide protection against accidental modifica-
tion and to limit the entities that can produce a valid Retry.

Initial packets use AEAD AES 128 GCM with keys derived from the Destination Connection
ID field of the first Initial packet sent by the client.

All other packets have strong cryptographic protections for confidentiality and integrity,
using keys and algorithms negotiated by TLS.

In Figure 1.7, we can see the process of AEAD AES 128 GCM encryption mechanism. An
unencrypted packet is first divided into a header and data. Subsequently, an encryption algorithm
is applied, in this case Advanced Encryption Standard with Galois/Counter Mode (AES-GCM).
Several input parameters are needed for encryption:

The unprotected Header is used as associated data of AEAD mechanism, this ensures in-
tegrity, but not confidentiality of used input.

The nonce is generated as the XOR of the Packet Number and the Initialization Vector.

In general, the key is derived based on the cryptographic level into which the corresponding
packet type falls. From Table 1.2, we can see that, in the QUIC Protocol there are multiple
levels of cryptography [8]. However, in this work, it is not necessary, to handle different
cryptographic levels. For the rest of this work, it is enough to consider that Initial Packets
fall into the Initial Secrets level.

1.1.4.1 Initial secrets
As mentioned above, the main encryption algorithm used is Authenticated Encryption with Asso-
ciated Data from Figure 1.7. The secrets used for encryption in this early stage of communication
between the Client and Server are derived from publicly known data (i.e. from fields of the Initial
Packet that are not protected with strong cryptographic encryption).



10 State of the Art

Table 1.2 Different cryptographic levels by Packet Type [8]

Packet Type Encryption Keys Packet Number Space
Initial Initial secrets Initial

0-RTT Protected 0-RTT Application data
Handshake Handshake Handshake

Retry Retry -
Version Negotiation - -

Short Header 1-RTT Application data

Header Payload

Unprotected QUIC Packet

AEAD
(AES-GCM)

Initialization vector

Packet Number

Associated Data

Nonce
Key

Encrypted
PayloadSampleAES-ECB

Header Protection Key

Masked Header Encrypted Payload

Protected QUIC Packet

Selected Header Fields

Plaintext

Figure 1.7 Authenticated Encryption with Associated Data [12]

The process of derivation secrets that are used in order to protect Initial Packets is as follows
(the process is described in more detail in Section 2)

Based on the initial salt, constant defined within the protocol specification and the Client
Destination Connection ID, the initial secret is derived.

Next, the initial secret is used to derive client initial secret and server initial secret. Within
this work, we focus only on client initial secret because we aim to revert Packet Protection
of packets sent by the Client.

Lastly, from the client initial secret the following secrets are derived:

Header Protection secret
Initialization Vector
Key used for the AES-GCM

According to [8], the derivation function for the derivation process of the above secrets is
HMAC-based Extract-and-Expand Key Derivation Function (HKDF), more precisely in two steps:

HMAC-based Key Derivation Function-Extract



QUIC Protocol 11

HMAC-based Key Derivation Function-Expand-Label

1.1.4.2 HMAC-based Key Derivation function
For the derivation process of Initial Secrets, the HMAC-based Extract-and-Expand Key Derivation
Function (HKDF) [13] is used. This Function consists of two main phases:

Extract Phase is designed to take an input keying material (IKM) and ”extract” from it a
fixed-length pseudorandom key (PRK). The extraction is typically done using an Hash-based
Message Authentication Code (HMAC) function. The process involves combining the IKM
with a salt using the HMAC.

Expand Phase involves using the PRK as the HMAC key and taking an info string (which is
a non-secret value that can be used to bind the derived keys to specific application contexts)
and a length parameter (indicating the length of the output keying material required) as
inputs. The process can produce a long stream of output key material by iteratively applying
the HMAC function.

1.1.4.3 Header Protection
As we may see in Figure 1.5, some parts of the header are marked as Protected. This is due
to the application of the Header Protection. Parts of QUIC headers, in particular the Packet
Number and the Packet Number Length fields, are protected using a Header Protection key that
is derived from the Initial Secret.

This derivation process is similar to the derivation process of Initialization Vector and AES-
GCM Key, which was described in Section 1.1.4.1. Next, as we can see in Figure 1.7 part
of the encrypted Packet Payload is used as an input into the Advanced Encryption Standard
in Electronic codebook (ECB) mode encryption algorithm. Lastly, the output of the encryption
algorithm is used in conjunction with certain header fields, applying the XOR operation to create
the final protected header fields.

A more detailed description of the derivation process of Header Protection keying material and
the application process of this keying material is examined within Section 2.5.3 and Section 2.6
respectively.

1.1.5 Frames
Frames are entities that contain the actual data. This data is not limited to application data; it
can also include information necessary for encrypting messages, various connection state proper-
ties, and the like. Frames are carried in packets, and their size must be such that it corresponds
to the packet size. Therefore, it is not possible for one frame to be divided and then sent in two
packets. Simultaneously, multiple frames can be carried in a single packet [5].

In Figure 1.8, we see the classic structure of a QUIC Frame. The attributes include:

Frame Type: indicates the type of frame. An example is provided in Table 1.3.

Type-Dependant Fields: this attribute varies depending on the type of frame being used.

In Table 1.3, we see the types of frames that the QUIC protocol uses, according to the RFC
9000 [5], the rules for their use are as follows:

PADDING: Without significant use, it is used only for manipulating packet sizes, specifically
for their increase.

PING: serves to determine the availability of the communicating party.



12 State of the Art

Frame {
Frame Type (),
Type-Dependant Fields (...),

}

Figure 1.8 Generic Frame Layout

ACK: ACK type frames contain acknowledgments of the receipt and processing of packets.

RESET STREAM: abrupt termination of stream data transmission.

STOP SENDING: the endpoint sends STOP SENDING to inform the other communicat-
ing party that the received data will be discarded.

CRYPTO: contains cryptographic handshake information.

NEW TOKEN: sent by the server to the client when it requires the client to use a new
Token in initial packets.

STREAM: contains stream application data.

MAX DATA: contains information about the maximum amount of data that can be sent
in the entire connection.

MAX STREAM DATA: contains information about the maximum amount of data that
can be transferred in a single stream.

MAX STREAMS: inform the communicating node about the maximum number of streams
that can be opened.

DATA BLOCKED: contains information that the sender could not send data due to a
connection limitation (typically a maximum data limit).

STREAM DATA BLOCKED: similar to the previous, but refers to a limitation at the
stream data level.

STREAMS BLOCKED: similar to the previous, but refers to a limitation on the number
of open streams.

NEW CONNECTION ID: contains information about a new connection identifier for the
communicating party.

RETIRE CONNECTION ID: information that the communicating node will no longer
use the connection identification number that was allocated by the other party.

PATH CHALLENGE: used in connection migration, tests the reachability of the other
party.

PATH RESPONSE: response to PATH CHALLENGE.

CONNECTION CLOSE: information about the closing or ending of the connection.

HANDSHAKE DONE: an empty frame without content, indicates confirmation from the
server side of the handshake.



QUIC Protocol 13

Table 1.3 Frame Types

Type Value Frame Type
0x00 PADDING
0x01 PING

0x02-0x03 ACK
0x04 RESET STREAM
0x05 STOP SENDING
0x06 CRYPTO
0x07 NEW TOKEN

0x08-0x0f STREAM
0x10 MAX DATA
0x11 MAX STREAM DATA

0x12-0x13 MAX STREAMS
0x14 DATA BLOCKED
0x15 STREAM DATA BLOCKED

0x16-0x17 STREAMS BLOCKED
0x18 NEW CONNECTION ID
0x19 RETIRE CONNECTION ID
0x1a PATH CHALLENGE
0x1b PATH RESPONSE

0x1c-0x1d CONNECTION CLOSE
0x1e HANDSHAKE DONE

1.1.5.1 CRYPTO Frame

One of the Frame Types that is used in the QUIC Protocol is CRYPTO Frame. This frame
is used for carrying TLS Handshake Messages. In Figure 1.9, we can see the structure of the
CRYPTO Frame. This structure is necessary for correctly obtaining the TLS Handshake data
that are transmitted in this type of Frame. In Section 2.8, we will use this structure to put
together separated CRYPTO Frames correctly.

CRYPTO Frame {
Type (i) = 0x06,
Offset (I),
Length (I),
Crypto Data (..),

}

Figure 1.9 Structure of CRYPTO Frame

The Frame contains the following fields:

Offset: Integer specifying the byte offset for the data in the CRYPTO frame.

Length: Integer specifying the length of the Crypto Data field in the CRYPTO frame.

Crypto Data: The cryptographic message data.



14 State of the Art

1.1.5.2 Out of Order Frames
Important information to note in terms of QUIC Frames is that the Packet Payload can contain
multiple frames of the same type. This can result in a situation where, for example, CRYPTO
frames are spread across the Packet Payload, even when the message corresponds to one Client
Hello message. This means after the Packet Payload is decrypted with the QUIC Plugin described
in Chapter 2, we should also consider that the CRYPTO frame containing desired Client Hello
TLS message is not required to be located at the start of Packet Payload. Rather, the Client
Hello message can be split into multiple CRYPTO frames, and these frames can be stored in the
Payload out-of-order [5].

This feature also called Chaos Protection and was introduced in QUICHE3. The purpose of
the feature is to reduce the likelihood of QUIC ossification due to middleboxes.

1.1.6 Stream
A stream is an ordered sequence of bytes of data that we want to transfer between end nodes [5].
It primarily concerns application data. Fundamentally, it is divided into two categories: unidi-
rectional and bidirectional. A unidirectional stream serves for data transfer in one direction, thus
from the initiator to the endpoint. Bidirectional allows for data transfer in both directions. A
stream is carried in frames. A typical example of a STREAM frame can be seen in Figure 1.10.
The first attribute is stream type; this value is not uniform because the values of the last 3 bits
can change, and they define:

STREAM Frame {
Type () = 0x08..0x0f,
Stream ID (),
[Offset ()],
[Length ()],
Stream data (..),

}

Figure 1.10 Structure of Stream Frame

The rightmost bit (0x01), or the FIN bit, defines whether the current frame terminates the
stream. If so, the final length is calculated as the sum of the Length variable and the Offset.

The second bit from the right (0x02), or the LEN bit, determines whether the Length variable
is present.

The third bit from the right (0x04), the last variable, also known as the OFF bit, indicates
whether the value of the Offset variable is present. If this bit is set to 0, meaning the Offset
value is not present, it implies that this STREAM frame contains the first bytes of the given
stream.

Stream ID: this attribute contains a unique identifier. It serves to distinguish and assign the
received stream data. Its use brings the advantage of Stream multiplexing (see Section 1.1.7).

Offset: the value of the Offset variable indicates a certain position. Imagining the stream as
a sequence of 0s and 1s, it’s clear that this sequence can be too long to fit in a single frame.
Therefore, we need to carry information about the index at which the currently transmitted

3https://github.com/google/quiche

https://github.com/google/quiche


QUIC-TLS 15

data starts. This information is stored as an integer in the Offset variable, which can only
take positive values and 0.

Length: is the length of the data carried in the current STREAM frame.

1.1.7 Advantages of the QUIC Protocol
From the features described in this chapter, several advantages of the QUIC protocol emerge [10]:

Connection Migration: Thanks to unique connection identifiers, rapid restoration of com-
munication is possible, for example, in NAT rebinding situations [10].

TLS over QUIC: The communication of the TLS protocol through QUIC enhances security
and can reduce the latency of connection establishment.

Stream Multiplexing: Each stream contains its unique identifier, which is processed on
the server/client side. Thus, if an error occurs in one stream, the others can continue without
problems.

Congestion Control: QUIC allows setting data transfer limits, thus controlling congestion
in individual connections. This principle can serve as protection when a server (or attacker)
sends data faster than the client can process.

0-RTT: Thanks to the 0-RTT handshake, the time to establish a connection is significantly
reduced.

Encryption and Masking: Header protection and pseudo-protection of Initial packets
increase the complexity of eavesdropping. Even if the encryption algorithm uses visible
parameters to derive keys, decryption requires considerable effort compared to the value of
the information it provides.

1.2 QUIC-TLS
QUIC carries TLS handshake data in CRYPTO frames, each of which consists of a contiguous
block of handshake data identified by an offset and length. Those frames are packaged into QUIC
packets and encrypted under the current encryption level. As with TLS over TCP, once TLS
handshake data has been delivered to QUIC, it is QUIC’s responsibility to deliver it reliably.
Each chunk of data that is produced by TLS is associated with the set of keys that TLS is
currently using. If QUIC needs to retransmit that data, it must use the same keys even if TLS
has already updated to newer keys [8]. In Figure 1.11, we can see how the layers of TLS and
QUIC are structured.

1.2.1 Server Name Indication
Server Name Indication extension, which is contained inside the TLS was introduced in the RFC
3546 [14]. As stated, because the TLS did not offer a method for a client to inform a server
with the domain name it is attempting to connect to. It is beneficial for clients to share this
information to enable secure connections to servers hosting multiple virtual servers on a single
underlying network address.

The client’s TLS Client Hello inside the CRYPTO Frame might include a Server Name Indi-
cation (SNI) extension, through which the client discloses the domain name it plans to connect
to, enabling the server to offer a certificate corresponding to that name. When included, SNI
details are accessible to unidirectional observers along the client-to-server path. In Figure 1.12
we can see how was the SNI Extension specified within the RFC 3546 [14]. This structure will
be particularly helpful during the extraction of the field in Chapter 2.



16 State of the Art

+--------------+--------------+ +-------------+
| TLS | TLS | | QUIC |
| Handshake | Alerts | | Applications|
| | | | (h3, etc.) |
+--------------+--------------+-+-------------+
| |
| QUIC Transport |
| (streams, reliability, congestion, etc.) |
| |
+---------------------------------------------+
| |
| QUIC Packet Protection |
| |
+---------------------------------------------+

Figure 1.11 QUIC Layers and TLS [8]

struct {
NameType name_type;
select (name_type) {

case host_name: HostName;
} name;

} ServerName;
enum {

host_name(0), (255)
} NameType;
opaque HostName<1..2ˆ16-1>;
struct {

ServerName server_name_list<1..2ˆ16-1>
} ServerNameList;

Figure 1.12 Structure of Server Name Indication extension [14]

1.2.2 User Agent
As stated in the RFC 7231 [15], The User-Agent field contains information about the user agent
originating the request, which is often used by servers to help identify the scope of reported
interoperability problems, to work around or tailor responses to avoid particular user agent
limitations, and for analytics regarding browser or operating system use. In Figure 1.13, we can
see an example of what the User Agent field can look like. We may notice that the field can
contain information about the version of your web browser or operating system in both cases
for desktop computers or mobile devices. This field, in terms of QUIC Protocol, has a simple
structure, starting with the type, which is used to differentiate between other extensions, followed
by the length of the User Agent field, and lastly, the content of the field.

During the Analysis, which is described in Chapters 3 and 4, we noticed that the Chrome
versions contained in the User Agent field are always smaller than 100. We think that it is due
to the fact that the User Agent field is marked as deprecated4. However, for the older devices
that use older Chrome versions ( 9X.X.XXXX.XXX), the field is still present.

4https://www.iana.org/assignments/quic/quic.xhtml

https://www.iana.org/assignments/quic/quic.xhtml


Network monitoring 17

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36

Figure 1.13 Example of the User-Agent field content

1.3 Network monitoring
Among the two most fundamental approaches to monitoring network communication are moni-
toring at the level of so-called network flows and deep packet analysis.

This work falls into both categories to some extent, as we first need to decipher the contents
of Initial packets. This will help us obtain more information. These pieces of information are
then used within the Network Monitoring tool called IPFIXProbe to enrich Network Flows with
the extracted information.

1.3.1 Flow monitoring
Monitoring through network flows is becoming increasingly utilized, especially in high-speed
networks with a large amount of transferred data. This method works by monitoring at the level
of IP flows, thus exporting information from IP headers. As mentioned in RFC 7011 [16], ”A
flow is a set of packets passing through an observation point in the network during a certain
time interval. All packets belonging to a specific flow have a set of common properties.” These
properties include header parameters, such as IP addresses, used ports, protocols, and others.

One of the protocols that deal with exporting IP flows is the IP Flow Information Export
(IPFIX) [16]. Its official standard [17] was published in 2008 by the Internet Engineering Task
Force community. The exported flow data can contain a large amount of information, as we see
in [18].

1.3.1.1 IPFIXProbe
One of the well-known tools that is capable of exporting IP flows is IPFIXProbe 5.

This IP flow exporter is an open-source project capable of exporting IPFIX output data
extended with various information by extension plugins. This software tool was originally known
as flow meter, a component of the NEMEA 6 system (the development started as a project of
bachelor and master theses at the Czech universities in cooperation with CESNET). However,
since the IPFIX ecosystem evolved and another open source project IPFIXcol2 became more
flexible and efficient, the team has decided to make IPFIXProbe also more independent.

As stated the tool is capable of exporting IPFIX output data extended with various informa-
tion by extension plugins. Let‘s discuss some of its basic fields.

1.3.2 Deep packet inspection
Deep packet inspection differs from the network flow monitoring method primarily in that it
examines the content of packets directly. While flow-level monitoring only examines the content
of the IP header, according to the article [19], deep packet inspection can also examine headers
of higher layers. Among its advantages and disadvantages are:

It examines packet data, thereby providing better information about the contents of packets
and, thus, better monitoring results.

5https://www.liberouter.org/high-speed-multithreaded-ip-flow-exporter-for-machine-learning/
6https://nemea.liberouter.org/

https://www.liberouter.org/high-speed-multithreaded-ip-flow-exporter-for-machine-learning/
https://nemea.liberouter.org/


18 State of the Art

Table 1.4 IPFIXProbe basic fields exported

Output field Type Description
DST MAC macaddr destination MAC address
SRC MAC macaddr source MAC address

DST IP ipaddr destination IP address
SRC IP ipaddr source IP address
BYTES uint64 number of bytes in data flow (src to dst)

BYTE REV uint64 number of bytes in data flow (dst to src)
LINK BIT FIELD

or ODID uint64 or uint32 exporter identification

TIME FIRST time first time stamp
TIME LAST time last time stamp
PACKETS uint32 number of packets in data flow (src to dst)

PACKETS REV uint32 number of packets in data flow (dst to src)
DST PORT uint16 transport layer destination port
SRC PORT uint16 transport layer source port

DIR BIT FIELD uint8 bit field for determining outgoing/incoming traffic
PROTOCOL uint8 transport protocol

TCP FLAGS uint8 TCP protocol flags (src to dst)
TCP FLAGS REV uint8 TCP protocol flags (dst to src)

It is demanding on performance, thereby reducing processing speed.

If strong cryptographic encryption is present for the protocol, it is impossible to apply this
method.

If encryption keys are already known, it is very challenging to keep them up to date.

Examining the contents of packets may infringe on user privacy.

Even though the QUIC protocol, with the underlying TLS, uses strong cryptographic encryp-
tion for transmitted packets, for certain limited types of packets, we can employ Deep Packet
Inspection. As previously mentioned in Sections 1.1.4 and 1.1.4.1, the Initial packets are prone
to DPI because the encryption used in this part of the Handshake can be reversed by an observer.
Thus, we can say this approach is also utilized within our work.



Chapter 2

IPFIXProbe QUIC Plugin

To analyze the QUIC protocol and enrich the flows of QUIC communication, we created an
IPFIXProbe plugin capable of extracting data from the protocol’s Handshake.

More precisely, as described within the State of the Art, QUIC communication begins with the
Handshake. The first packet of the Handshake from the Client side is called Initial and contains
the Client Hello. As already mentioned, during this phase, the underlying QUIC-TLS [8] needs
to transmit and agree on important data between the Server and Client to proceed with the
communication. Among the many parameters transferred within the Client Hello are the Server
Name Indication and the User Agent. The QUIC plugin contained within the IPFIXProbe
module is capable of extracting these fields.

2.1 Variable-Length Integer Encoding
For plugin implementation purposes, it is worth noting that QUIC Packets and Frames commonly
use a variable-length encoding for non-negative integer values. This encoding ensures that smaller
integer values need fewer bytes to encode. The QUIC variable-length integer encoding reserves
the two most significant bits of the first byte to encode the base-2 logarithm of the integer
encoding length in bytes [5].

Table 2.1 Summary of Variable Integer Encoding [5]

2MSB Length Usable Bits Range
00 1 6 0-63
01 2 14 0-16383
10 4 30 0-1073741823
11 8 62 0-4611686018427387903

2.2 Version specific Initial Salt
In Section 1.1.4.1, we described that one of the inputs during the derivation process of the Initial
Secrets is initial salt. This constant is indeed defined within the QUIC Protocol specification.
However, it may be worth mentioning that different QUIC draft versions can specify different
values of the initial salt. For example, at the time of writing, the latest RFC 9000 [8] defines
the initial salt with the value of 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a. Older versions
of QUIC Protocol, for example, draft-ietf-quic-tls-32 [20] uses

19



20 IPFIXProbe QUIC Plugin

0xafbfec289993d24c9e9786f19c6111e04390a899 for initial salt. This fact is later on considered
during the derivation process of Initial Secrets.

2.3 Initial Packet Filter
Once the packet lands in the detection module, we need to check if the packet contains QUIC
Protocol data, additional check if the packet is of type Initial with the Long Header needs to
be performed. This inspection is required since the detection module can process a huge load
of network traffic, so to increase the effectiveness of the plugin, unnecessary packets need to be
filtered out from the beginning.

The plugin performs these initial checks:

Protocol number equals 17 on the Internet Protocol (IP) Layer

Destination Port equals 443 on the User Datagram Protocol (UDP) Layer

On the QUIC Protocol Layer, the packet has a Long Header and is of type Initial

Code listing 2.1 QUICParser::quic initial checks
bool QUICParser :: quic_initial_checks(const Packet& pkt)
{

// Port check and UDP check
if ( pkt.ip_proto != 17 ||

pkt.dst_port != 443 ) {
return false;

}
// Initial packet check
if (! quic_check_initial(pkt.payload [0])){

return false;
}
return true;

}
bool QUICParser :: quic_check_initial(uint8_t packet0)
{

// version 1
if (( packet0 & 0xF0) == 0xC0) {

is_version2 = false;
return true;

}
// version 2
else if (( packet0 & 0xF0) == 0xD0) {

is_version2 = true;
return true;

} else {
return false;

}
}

2.4 Extract Header Fields
After we are sure that the obtained packet has the necessary type. We can proceed with the
data extraction from the Header. As stated in Section 1.1.4 the Header is used as associated
data input into the AEAD function. Next, Destination Connection ID is used as input into the



Initial Secrets Derivation 21

key derivation function, see Section 1.1.4.1. Lastly, Packet Number is used as part of the XOR
operation in order to derive Nonce, the input parameter of the AES-GCM, see Figure 1.7.

Code listing 2.2 QUICParser::quic parse header
bool QUICParser :: quic_parse_header(const Packet& pkt)
{

(...)
const uint8_t* payload_pointer = pkt.payload;
(...)
if (quic_h1 ->dcid_len != 0) {

dcid = (payload_pointer + offset );
offset += quic_h1 ->dcid_len;

}
}

During the process of extraction fields from the Header, we need to pay attention to the
Variable-Length Integer Encoding in Section 2.1. As can be seen in Figure 1.5, the Packet
Number Length field inside the Header is marked as Protected. To sum up, at this stage, we do
not exactly know where the Packet Payload starts because we do not yet know what the length
of the Packet Number field within the Header is; thus, we are not even able to extract the Packet
Number completely. However, after the Header Protection mechanism is reverted in the next
sections, we are going to obtain the Packet Number Length field, which will give us the required
information about the Packet Number.

2.5 Initial Secrets Derivation

As may be evident from Section 1.1.4.1, the derivation of initial secrets occurs in several steps.

The first step involves deriving the initial secret.

Following the initial secret, the client initial secret for the client side, respectively server initial secret
for the server side, can be derived.

In the final step, the final initial secrets, which are used as keying input into the AEAD
algorithm, are derived from the previous secrets. These include:

The AEAD key and initialization vector.

The Header Protection key.

As we can see in Code listing 2.3 in order to derive initial secret we need to use HKDF-Extract
function which consists of input parameters as:

Version specific Initial Salt

Client Destination Connection ID, which is available from the 2.4

Code listing 2.3 pseudo-code of Initial Secret derivation
// Initial salt specific for the latest RFC 9001 version
initial_salt = 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a
initial_secret = HKDF -Extract(initial_salt , client_dst_connection_id)



22 IPFIXProbe QUIC Plugin

2.5.1 Client Initial Secret
To revert the initial encryption of the Client Hello message. We need to obtain encryption keys
used by the Client to encrypt the Initial packet. In Code listing 2.4 we can see pseudo-code
how are further client initial secret or server initial secret derived from the previously derived
common initial secret. To be more precise, the input arguments are as follows:

Already derived common Initial Secret

”client in” or ”server in” string, based on the side.

Hash.length in this case 32 bytes

Code listing 2.4 pseudo-code of Client Initial Secrets derivation
client_initial_secret = HKDF -Expand -Label(initial_secret ,

"client␣in", "",
Hash.length)

server_initial_secret = HKDF -Expand -Label(initial_secret ,
"server␣in", "",
Hash.length)

2.5.2 AES-GCM Initial Secrets
From the derived client initial secret, we can continue and derive the keying material for the
AEAD AES-GCM encryption function. From Section 1.1.4.1 and Figure 1.7 we can conclude
that the required keying material is Initialization Vector and Encryption Key.

The process of derivation is similar to the derivation process of the previous secrets. In Code
listing 2.5 we can notice , that HKDF-Expand-Label function is used again, with the following
arguments

Previously derived Client Initial Secret

”quic key” string for the AEAD key and ”quic iv” for the AEAD Initialization Vector

Hash.length of value 16 for the AEAD key and 12 for the AEAD Initialization Vector

Code listing 2.5 pseudo-code of Key and Initialization Vector derivation
key = HKDF -Expand -Label(client_initial_secret ,

"quic␣key", "",
Hash.length)

iv = HKDF -Expand -Label(client_initial_secret ,
"quic␣iv", "",
Hash.length)

2.5.3 Header Protection secret
As briefly discussed in Section 1.1.4.3 and shown in Figure 1.7, packet Headers also possess
minimal security and integrity protection. Parts of the Header, especially the Packet Number
and Packet Number Length are protected with the Header Protection algorithm [8]. In order
to perform the un-protection algorithm, Header Protection keying material needs to be derived.
This keying material is derived in the same way as the Initialization Vector and AEAD Key.

Within the Code listing 2.6, we can see the pseudo-code of the derivation process of the
Header Protection key. The inputs are as follows:



Reverting Header Protection 23

Previously derived Client Initial Secret

”quic hp” string

Hash.length of value 16

Code listing 2.6 pseudo-code of Header Protection Key derivation
hp = HKDF -Expand -Label(client_initial_secret ,

"quic␣hp", "",
Hash.length)

2.6 Reverting Header Protection

The mechanism of the Header Protection is well defined in the official RFC 9001 [8]. To be able
to revert Payload Protection, we need to revert Header Protection first. As already discussed in
Section 2.4, Packet Number Length is protected, moreover, Packet Number is a necessary field for
Payload protection AES–GCM encryption algorithm as the Packet Number with the conjunction
of Initialization vector form Nonce. Unprotected Header is also used as associated data field for
the Authenticated encryption with associated data algorithm.

In the Code listing 2.7, we can see the pseudo-code of the Header Protection application [8].
The mechanism consists of the following steps:

Encrypt Sample part of the encrypted Packet Payload with the derived Header Protection
key.

Based on the Header Type, within the context of this work, we focus on the Long Header
Type as it is used for the Initial Packets, mask the first byte of the Header.

Mask the Packet Number

Code listing 2.7 pseudo-code of Header Protection
mask = AES -ECB(hp_key , sample)

pn_length = (packet [0] & 0x03) + 1
if (packet [0] & 0x80) == 0x80:

# Long header: 4 bits masked
packet [0] ˆ= mask [0] & 0x0f

else:
# Short header: 5 bits masked
packet [0] ˆ= mask [0] & 0x1f

# pn_offset is the start of the Packet Number field.
packet[pn_offset:pn_offset+pn_length] ˆ= mask [1:1+ pn_length]

It is worth noting that, we discussed within the Section 2.4 that the Packet Number Length is
protected so we do not know exactly where the Packet Payload starts as we do not know exactly
what is the length of the Packet Number. However, in the official RFC 9001 [8], allowance was
made. This allowance specifies that the Sampled Part will always start at an offset of 4 bytes
after the Packet Number starts, this allows the removal of protection by a receiving endpoint.



24 IPFIXProbe QUIC Plugin

2.6.1 Sample Encryption

Firstly, to successfully revert the protection of the Header we are going to perform Sample
encryption with the Header Protection key derived in Section 2.5.3. This keying material is
used as an Input to the Advanced Encryption Standard in the Electronic Codeblock mode. The
Sampled Part is taken as part of the Packet Payload starting on an offset of 4 bytes after the
Packet Number. In Code listing 2.8 we can see a simplified process of such encryption.

Code listing 2.8 QUICParser::quic decrypt header
bool QUICParser :: quic_encrypt_sample(uint8_t* plaintext)
{

// setup context
EVP_EncryptInit_ex(ctx ,

EVP_aes_128_ecb (),
NULL ,
initial_secrets.hp,
NULL)

// " plaintext " contains the final output
(...)
if (!( EVP_EncryptUpdate(ctx ,

plaintext ,
&len ,
sample ,
SAMPLE_LENGTH = 16))) {

return false;
}
(...)

}
bool QUICParser :: quic_decrypt_header(const Packet& pkt)
{

(...)
// Encrypt sample with AES -ECB.
if (! quic_encrypt_sample(plaintext )) {

return false;
}
memcpy(mask , plaintext , sizeof(mask ));
(...)

}

2.6.2 Packet Number Length

After performing Sample Encryption on the Packet Payload Sampled part, we can continue with
reverting the protection of Header fields. In this case, we are going to revert protection of the
Packet Number Length, this field is crucial as in order to obtain the exact start of the Packet
Payload we need to know exactly what is the length of the Packet Number. As already stated,
we are going to consider only the Long Header Type so there is no need to perform the check
described in Code listing 2.7. In Code listing 2.9, we can see the process of reverting protection of
the first byte, the first byte contains Packet Number Length, this fact can be seen in Figure 1.5.



Reverting Header Protection 25

Code listing 2.9 QUICParser::quic decrypt header
bool QUICParser :: quic_decrypt_header(const Packet& pkt)
{

(...)
// Long header : 4 bits masked
first_byte = quic_h1 ->first_byte ˆ (mask [0] & 0x0f);
pkn_len = (first_byte & 0x03) + 1;
(...)

}

After we successfully revert the protection of the Packet Number Length, we can continue
with updating the start of the Packet Payload. To put this in context, as stated in Section 2.4,
we were not able to obtain the exact Packet Payload start as Packet Number Length and Packet
Number fields are protected with the Header Protection so we had to revert the protection of
Packet Number Length first. In Code listing 2.10, we can see that the Packet Payload and the
corresponding length of the Payload and Header, respectively, are updated.

Code listing 2.10 QUICParser::quic decrypt header
bool QUICParser :: quic_decrypt_header(const Packet& pkt)
{

(...)
// after unprotecting pkn_len , we know exactly pkn length
// so we can correctly adjust the start of the payload
payload = payload + pkn_len;
payload_len = payload_len - pkn_len;
header_len = payload - pkt.payload;
(...)

}

2.6.3 Packet Number

One of the last steps of reverting the Header Protection is to obtain the Packet Number. In the
previous Section 2.6.2, we obtained the Length of the Packet Number. Now we can proceed and
obtain the Packet Number, then we will continue and derive the Nonce, which is the input of
AES-GCM encryption algorithm in Figure 1.7. In Code listing 2.11, we can see how the Packet
Number protection is reverted, and then the Header is updated so that it contains an unprotected
Packet Number.



26 IPFIXProbe QUIC Plugin

Code listing 2.11 QUICParser::quic decrypt header
bool QUICParser :: quic_decrypt_header(const Packet& pkt)
{

(...)
// copy protected packet number into the buffer
uint8_t full_pkn [4] = {0};
memcpy (&full_pkn , pkn , pkn_len );
for (unsigned int i = 0; i < pkn_len; i++) {

packet_number |=
(full_pkn[i] ˆ mask[1 + I]) <<
(8 * (pkn_len - 1 - i));

}
// update the header so that it contains unprotected
// packet number
for (unsigned i = 0; i < pkn_len; i++) {

header[header_len - 1 - i] =
(uint8_t)
(packet_number >> (8 * i));

}
(...)

}

Lastly, as we currently have the Header completely unprotected, we can proceed with creat-
ing the Nonce, which is derived from Packet Number and Initialization Vector, see Figure 1.7.
In Code listing 2.12, it can be seen how the Nonce is created based on the Initialization Vector
derived in Section 2.6.3, and Packet Number.

Code listing 2.12 QUICParser::quic decrypt header
bool QUICParser :: quic_decrypt_header(const Packet& pkt)
{

(...)
// adjust nonce for payload decryption
// The exclusive OR of the padded packet
// number and the IV forms the AEAD nonce
phton64(initial_secrets.iv + sizeof(initial_secrets.iv) - 8,

pntoh64(
initial_secrets.iv +
sizeof(initial_secrets.iv) - 8) ˆ
packet_number );

(...)
}

2.7 Reverting Packet Protection
For the Payload Protection AEAD AES 128 GCM mechanism is used [8]. From the previous
Sections we successfully obtained the:

AES-128-GCM Encryption Key in Section 2.5.2

Associated Data which in this case are all Header fields in unprotected form, reverting Header
Protection is described in Section 2.6

Packet Payload starting point in Section 2.6.2

Nonce creation which was created after unprotecting the Packet Number in Section 2.6.3



Reverting Packet Protection 27

Setup Encryption Context and Authentication Tag

In the first step of Packet Payload encryption, we need to set up the encryption context and
the Authentication Tag. As seen in Figure 1.7 unprotected Header is used as an associated data
input to the AES-GCM algorithm, this means that the algorithm will produce an Authentication
Tag at the end of the encryption which is then used to check the integrity of the associated data,
but the associated data field is not encrypted in this stage. In Code listing 2.13 we can see this
initial setup process.

Code listing 2.13 QUICParser::quic decrypt payload
bool QUICParser :: quic_decrypt_payload(const Packet& pkt)
{

(...)
// setup Authentication Tag as last part of the Payload
uint8_t atag [16] = {0};
payload_len -= 16;
memcpy (&atag , &payload[payload_len], 16);
(...)
// setup encryption algorithm
EVP_DecryptInit_ex( ctx ,

EVP_aes_128_gcm (),
...)

// setup lengths of IV and Nonce
EVP_CIPHER_CTX_ctrl(ctx ,

EVP_CTRL_AEAD_SET_IVLEN = 9,
TLS13_AEAD_NONCE_LENGTH - 12,
NULL)

// setup nonce and key
EVP_DecryptInit_ex(ctx , NULL , NULL ,

initial_secrets.key ,
initial_secrets.iv)

(...)
// SET ASSOCIATED DATA ( HEADER with unprotected PKN)
EVP_DecryptUpdate( ctx ,

NULL ,
&len ,
header ,
header_len)

(...)
}

Key and Nonce

The next step is to set Nonce and Key. The Initialization vector is derived within the Sec-
tion 2.5.2, and the Nonce is created in Section 2.6.3, respectively. The corresponding AES-GCM
encryption key was also derived in Section 2.5.2. Within the Code listing 2.14 we setup the
Encryption Key and the Nonce.



28 IPFIXProbe QUIC Plugin

Code listing 2.14 QUICParser::quic decrypt payload
bool QUICParser :: quic_decrypt_payload(const Packet& pkt)
{

(...)
// Setup Encryption Key and Nonce
EVP_DecryptInit_ex( ctx ,

NULL ,
NULL ,
initial_secrets.key ,
initial_secrets.iv

(...)
}

Finalize Encryption and Check Authentication Tag
Finally, the main and also last step of Packet Payload encryption is to perform and finalize
the encryption and check the Authentication Tag. In the Code listing 2.15 we can see how the
encryption process, the finalization and the Authentication Tag are performed.

Code listing 2.15 QUICParser::quic decrypt payload
bool QUICParser :: quic_decrypt_payload(const Packet& pkt)
{

(...)
// Perform the Encyrption
EVP_DecryptUpdate( ctx ,

decrypted_payload ,
&len ,
payload ,
payload_len)

// Perform the Authentication Tag check
EVP_CIPHER_CTX_ctrl(ctx ,

EVP_CTRL_AEAD_SET_TAG ,
16,
atag)

// Finalize Encrytpion
EVP_DecryptFinal_ex(ctx ,

decrypted_payload + len ,
&len)

(...)
}

2.8 Assemble Packet Payload
Due to the Chaos Protection feature described in the Section 1.1.5.2, we have to make sure that
we consider also CRYPTO frames that are split across the whole Packet Payload of the Initial
Packets. As mentioned in the RFC 9000 [5]. There are only a few Frame types that can occur
in the Packet Payload of Initial packets. More precisely,

Frame types that can be included in the Initial packets:

PADDING with the type value of 0x00

PING with the type value of 0x01



Assemble Packet Payload 29

ACK with the type value of 0x02-0x03

CRYPTO with the type value of 0x06

CONNECTION CLOSE with the type value of 0x1c-0x1d

Once we know which Frame types we can expect in the Initial Packets, we can simply iterate
through the Packet Payload.

Code listing 2.16 QUICParser::quic reassemble frames
bool QUICParser :: quic_reassemble_frames(const Packet& pkt)
{

(...)
uint8_t* payload_end = payload + payload_len;
while (current < payload_end) {

if (current == CRYPTO ){
// update current position inside
quic_copy_crypto(payload );

} else if (current == ACK){
// update current position inside
quic_skip_ack(payload );

} else if (current == CONNECTION_CLOSE1 ){
// update current position inside
quic_skip_connection_close(payload );

} else if (current == PADDING ){
current ++;

} else if (current == PING){
current ++;

} else{
return false;

}
(...)

}

In Code listing 2.16 listing above, we can see the simplified logic of such iteration. During
the iteration, once we find CRYPTO Frame, we can proceed with copying Handshake data from
the CRYPTO Frame. As described in Section 1.1.5.1 CRYPTO Frame contains the field Length
and Offset. These two fields tell us how much Handshake data we should copy and what is the
offset on which this Handshake data should be located. In Code listing 2.17 we can see how the
described logic is performed, additionally worth noting that, the Frame Offset and Length fields
use Variable Length Encoding mentioned in Section 2.1.

Code listing 2.17 QUICParser::quic copy crypto
bool QUICParser :: quic_copy_crypto(uint8_t* start , uint64_t& offset)
{

(...)
// located length and offset fields
uint16_t frame_offset = quic_get_variable_length(start , offset );
uint16_t frame_length = quic_get_variable_length(start , offset );
(...)
// copy Handshake data to the assembled payload
memcpy(assembled_payload + frame_offset , start + offset , frame_length );

}



30 IPFIXProbe QUIC Plugin

2.9 Obtain TLS Data

In Section 1.3.1.1, we described the IPFIXProbe and basic flow data that the Plugin exports.
Within this Section, we will introduce new flow fields corresponding to the QUIC Protocol and
the underlying TLS.

After we successfully reverted Header Protection and Packet Payload Protection in the previ-
ous Sections, it is now possible to parse data from the re-assembled CRYPTO Frames contained
within the Initial Packet. In order to obtain TLS data, IPFIXProbe TLS Plugin was partially
used; however, this parser was further expanded to be able also to parse fields such as User Agent
(described in Section 1.2.2).

In the Code listing 2.18, we can see the starting process of obtaining TLS data. Firstly, based
on the TLS Parse plugin already contained in IPFIXProbe, we try to check if the TLS message
contains the required fields. If any of these checks fail, the process is terminated. When all of
the checks pass, we proceed with obtaining the TLS data.

Code listing 2.18 QUICParser::quic parse tls
bool QUICParser :: quic_obtain_tls_data ()
{

(...)
tls_parser.tls_get_server_name(payload , sni , BUFF_SIZE );
tls_parser.tls_get_quic_user_agent(payload , user_agent , BUFF_SIZE );
(...)

}
bool QUICParser :: quic_parse_tls ()
{

(...)
if (! tls_parser.tls_check_handshake(payload )) {

return false;
}
if (! tls_parser.tls_skip_random(payload )) {

return false;
}
if (! tls_parser.tls_skip_sessid(payload )) {

return false;
}
(...)
if (! quic_obtain_tls_data(payload )) {

return false;
}
(...)

}

In the Code listing 2.19, we can see what the simplified version of obtaining a User Agent can
look like. However, this function is only the last point and is pretty simple as the structure of
this extension stored in the QUIC Initial Packet is publicly known and can be freely searchable.



Finalized Plugin 31

Code listing 2.19 QUICParser::get quic user agent
void TLSParser :: get_quic_user_agent(

TLSData &data ,
char *buffer)

{
const uint8_t *quic_transport_params_end =

data.start +
quic_transport_params_len +
sizeof(quic_transport_params_len );

uint64_t offset = 0;
uint64_t param = 0;
uint64_t length = 0;

while (data.start + offset < quic_transport_params_end) {
// variable length fields
param =

quic_get_variable_length (( uint8_t *) data.start , offset );
length =

quic_get_variable_length (( uint8_t *) data.start , offset );
if (param == TLS_EXT_GOOGLE_USER_AGENT) {

memcpy(buffer , data.start + offset , length );
return;

}
offset += length;

}
return;

}

2.10 Finalized Plugin
The output (or the flow) of the IPFIXProbe protocol was enriched by the data contained within
the decrypted Initial Packets. Table 2.2 shows fields that are extracted from the Initial Packets
of the QUIC Protocol, in Section 1.3.1.1 we can see Basic fields that IPFIXProbe extracts. The
QUIC Plugin output can be optionally included.

Table 2.2 New IPFIXProbe fields introduced by the QUIC Plugin

Output field Type Description
QUIC SNI string Server name Indication
QUIC USER AGENT string User Agent field
QUIC VERSION uint32 Version of used QUIC Protocol

2.10.1 Dataset
Based on the plugin created, and with the help of my supervisor, we created Dataset, which
is later on used within the Analysis Chapter 3 and 4. This Dataset contains backbone flows
captured with the IPFIXProbe and enriched by QUIC Plugin flow field data. The Dataset
contains captured and analyzed data, which span from Week 40 of the year 2022 until Week 20
of the year 2023. There is a small gap in the Dataset, which is in the week 50 of the year 2022.
Unfortunately, the IPFIXProbe was not operational during some of the days that week, thus the
week is not included in the Dataset. The part of the overall dataset (Week 44 til Week 47) was



32 IPFIXProbe QUIC Plugin

made publicly available in the journal publication CESNET-QUIC22: A large one-month QUIC
network traffic dataset from backbone lines [21]



Chapter 3

Analysis

In Chapter 2 we created the IPFIXProbe QUIC plugin capable of extracting encrypted data from
Initial Packets of the QUIC Protocol. Later on, after the plugin was finalized and deployed, with
the help of my thesis supervisor, we created QUIC Dataset, which is described in Section 2.10.1.
This Dataset is analyzed in this Chapter.

3.1 State of the Dataset

Firstly we analyzed how data contained within the Initial Packets evolve each set of weeks. How
many flows contain Cronet-type User Agent, how many flows contain Chrome-type User Agent,
how many flows are connected to the particular device types, and more. In Table 3.1 we can see
these numbers. Each column represents data from the week span contained within the column
label.

Table 3.1 Initial Flow Statistics

40-43 44-47 48-52 01-04 05-08 09-12 13-16 17-20
Number of

flows 307 863 335 916 243 116 216 760 248 364 308 630 242 313 221 306

Chrome User
Agents 84.9% 86.7% 84.8% 86% 83.2% 86.1% 83.2% 85.6%

Cronet User
Agents 13.7% 11.2% 11.6% 11.1% 13.3% 11.4% 13.6% 11.5%

Android 63 819 71 594 47 269 36 337 47 199 59 386 52 353 55 666
Mac 58 422 77 171 42 535 34 995 35 921 54 271 38 041 30 100

Windows 111 653 107 999 84 398 92 845 117 282 141 081 97 531 85 469
Linux 29 528 39 298 38 756 26 304 14 093 17 468 11 252 13 360

The Table shows the initial statistics of the flows we captured. Firstly we differentiate between
the Chrome user Agents and Cronet User Agents. This is because Chrome User Agents can
provide more information about the device than the Cronet User Agents, example of both types
can be seen in Figure 3.1, so we want to know what is the fraction of these types.

The Table 3.1 also contains numbers representing occurrences of each device type. We can
see that the numbers are decreasing over time; we suspect that this is due to the newer version
of Chrome, which deprecated the User Agent fields, and the field is no longer present in this
version.

33



34 Analysis

Cronet related User Agent:
com.google.android.gms Cronet/99.0.4844.35

Chrome related User Agent:
Chrome/92.0.4515.107 Windows NT 10.0; Win64; x64

Figure 3.1 Comparison of Cronet and Chrome related User Agents

3.2 User Agents
After we collected basic statistics about the Dataset, we continued evaluating the User Agents.
We were interested in observing how many User Agents are still present in the TLS Handshake,
and what these User Agents look like. Thus, this Section contains data about the ten most
common User Agents depending on the ecosystem, such as Androids, Macs, iPads and iPhones,
Windows, and lastly, Linux.

Android
In Figure 3.2, we can see a pie chart representation of the 10 most common Android User
Agents across our entire dataset. This chart clearly shows which Android User Agents are used
most frequently. Chrome/91.0.4472.134 Android 10; JNY-LX1 is the most common, indicating
a high prevalence in our data. Based on the Huawei official webpage1, this model number
belongs to the HUAWEI P40 lite which we think is expected as the Huawei brand is common
in the general public. This is followed by Chrome/92.0.4515.115 Android 10; Redmi Note 7 and
Chrome/94.0.4606.85 Android 11; Mi A3, showing a lower but significant usage.

Figure 3.2 most common Android related User Agents

Mac
Next, in Figure 3.3, we can see the distribution of the 10 most common Mac User Agents within
our dataset. The chart effectively highlights Chrome/94.0.4606.71 Intel Mac OS X 10 15 7 as

1https://consumer.huawei.com/cz/support/phones/p40-lite/

https://consumer.huawei.com/cz/support/phones/p40-lite/


User Agents 35

the predominant user agent, clearly showing its widespread use among Mac users. Following
closely are Chrome/91.0.4472.164 Intel Mac OS X 10 15 7 and Chrome/91.0.4472.114 Intel
Mac OS X 10 15 7, which also represent significant portions. We can clearly see that the device
part within the User-Agent stays the same for almost the whole ordering; the only thing that
changes is the Chrome version.

Figure 3.3 most common Mac related User Agents

iPhone and iPad
Continuing with iPhone and iPad devices, in Figure 3.3, we noticed that the variance of Mac-
based devices is not high. Moreover, we suspect that the Intel Mac OS X 10 15 7 User Agent
corresponds to the MacBooks. Thus, we tried to evaluate if we would be able to find also
portable devices from the Apple Ecosystem. In Figure 3.4, we can see that the Dataset also
contains iPads and iPhones. We can also notice that the absolute number of occurrences in
our Dataset is relatively low compared to other devices. Even though, I find it interesting, as I
thought more people owned iPhones or iPads. However, the lower number of such devices could
probably result from two factors: first, not as many people as I initially thought actually own
iPhones; second, within this ecosystem, especially for mobile devices, the Safari browser is more
popular.

Windows
The situation with Windows devices is pretty much the same as for Macintosh devices. Based
on Figure 3.5 we can again conclude that the device part does not provide as much variance as
the Chrome version. We can see that the most occurred device across all Dataset connected to
Windows is Windows 10 with the 64-bit architecture. We think that this User Agent mostly
refers to personal desktop computers and servers.

Linux
The last category in the User Agents that we try to observe is Linux-related User Agents. In
Figure 3.6 we can see the ten most common Linux User Agents across the Dataset. From first
sight, we can observe that the situation is almost the same as for Macintosh and Windows, like
the User Agent Chrome/91.0.4472.77 Linux x86 64 contains always the same device model, but



36 Analysis

Figure 3.4 most common iPhone and iPad related User Agents

the Chrome version provides variance. On the other hand, it is interesting that for User Agents
built on Debian 10.9. running on Debian 10.13 Chrome/90.0.4430.212 Linux x86 64 and built
on Ubuntu, running on Ubuntu 16.04 Chrome/90.0.4577.82 Linux x86 64 we can see different
Linux distributions i.e. Debian and Ubuntu.

3.3 Server Name Indications

Regarding the Server Name Indication field, in Figure 3.7 we can see the ten most accessed Server
Names in our Dataset. As expected, we can see that amongst the top common Server Names are
services corresponding to Spotify, Google, and Avast. We do not find these numbers particularly
interesting right now, however in Chapter 3 4 we will discuss that the Server Name Indication
can be helpful in aggregating flows based on unique identifiers.

3.4 QUIC Version

To complete the initial analysis we collected the most common QUIC Version numbers. In Ta-
ble 3.2 we can observe that the most common specified versions are 0xff00001D which corresponds
to the draft-ietf-quic-transport-29 versions. As stated in the draft-ietf-quic-transport-29 [22], ver-
sion numbers used to identify IETF drafts are created by adding the draft number to 0xff000000.
For example, draft-ietf-quic-transport-13 is identified as 0xff00001D. The second most common
version is version 0x00000001 which identifies that the latest QUIC specification is used [5].

Table 3.2 Quic Version occurrences

QUIC Version Field Number of occurrences
0xff00001D 1268946
0x00000001 855320



Conclusion 37

Figure 3.5 most common Windows related User Agents

3.5 Conclusion
In this Chapter, we obtained basic statistics from our Dataset. We were observing differences
between Cronet and Chrome, like User Agents. We also collected numbers corresponding to the
most common User Agents or devices, based on the Ecosystem they belong to, namely Androids,
iPads, iPhones, Macs, Windows, and Linux. We noticed that the model identifiers in the User
Agent field are interesting, publicly observable identifiers. In connection with the Server Name
Indication, we think that we may be able to aggregate flows in Dataset which can help us to
understand more about the User’s behavior, activity, or location. This topic is described in more
detail within the next Chapter 4.



38 Analysis

Figure 3.6 most common Linux related User Agents

Figure 3.7 most common Server Name Indications



Chapter 4

User Agent Model Numbers

In the previous Chapter 3 we noticed that apart from the Cronet User agents, the remaining
User Agents contain information about the device, like model number and occasionally chrome
version. Since some model numbers were non-standard and ”exotic,” we formulated a hypothesis
that a persistent Chrome user agent can be used as a persistent device identifier regardless of
IP address changes. If true, the device movement can be traced between multiple locations
determined by the device IP addresses. In this chapter, we describe all analysis methods and
results used for confirmation or rejection of our hypothesis.

4.1 Dataset Preparation
From the raw dataset flow data, we automatically extracted all information necessary for our
analysis. All other fields have not been used in this analysis. The used fields are:

Device Location or, more precisely, address of IP address owner (e.g., institution or ISP).
We have created a script that was automatically executed by the thesis supervisor to obtain
owners of the IP addresses. For that purpose, we use public service IPinfo1, which provided
us with the Name of the address owner and its address. The address of the owner served as
a location in our analysis.

User Agent was obtained directly from the dataset. It is considered a persistent identifier.

Server Name Indication obtained directly from the dataset. A combination of User Agent
and SNI can make the persistent identifier more accurate.

Timestamp used for monitoring changes of Device location in time.

The real user IP addresses have been processed automatically and never inspected by me or
the thesis supervisor. By analyzing these data, we did not attempt to link the User Agent with the
real user on the network. Moreover, we believe that such linkage is impossible based on the data
available in the dataset. The aim of this analysis is to inspect the possibility of possible privacy
violation techniques that could be leveraged by high-power entities like oppressive regimes.

4.2 Aggregating flows
The first idea is to aggregate the flows. The Dataset created is basically nothing less than a
huge amount of flows captured. We think that it is important to aggregate flows into the smaller

1https://ipinfo.io/

39

https://ipinfo.io/


40 User Agent Model Numbers

clusters, and then we may be able to analyze these clusters better. Ideally, it would be best to
find such unique keys so that when we aggregate the flows together, each cluster will correspond
to one particular device.

4.2.1 User Agent and Location
Firstly we try to aggregate the flows by the User Agent and Location. This idea from first sight
may look promising, on the other hand, this aggregation will not help us much because users can
end up in different clusters, even though the User Agent is the same, but the location differs.

4.2.2 User Agent as Unique Identifier
The second approach we tried was to aggregate flows based only on User Agents. This approach
is not sufficiently unique, for example for stationary devices, there are a lot of flows, with the
same User Agent but with different locations. For more portable devices, this approach may be
good for older devices, which will result in a smaller cluster of flows, however for newer devices
we would obtain a large cluster of data but spread across geolocation. Within the next part, we
add an additional flow field, which can increase uniqueness, thus improving aggregation.

4.2.3 User Agent and SNI as Unique Identifier
Finally, the last approach to the aggregation of flows is to aggregate them Using the Server
Name Indication along with the User Agent. Within this approach, we follow the hypothesis
that users are connecting from the same device, and connect to the same Web Pages repeatedly.
For example, I‘m attending the Czech Technical University Faculty of Information Technology in
Prague, but I‘m from Slovakia and I go home every third week. We believe that this scenario can
result in situations where most of my QUIC network traffic can be captured in Prague. However,
during some weekends, my network traffic can also be captured within my hometown. Therefore,
based on the approach of aggregating flows based on User Agent and Server Name Indication,
we should see such behavior in students traveling across the Czech and Slovak Republic.

4.3 Evaluation Function
At this point we had IPFIX flows aggregated based on the User-Agent and Server Name Indica-
tion as described in the previous Section, We started to think that it would be helpful to try to
evaluate the aggregated data based on some evaluation function. The function does not need to
evaluate every aggregated Server Name Indication and User Agent with a precise number, but it
should provide some helpful information. Based on this, we created Evaluation function, which
can extract the following information from the aggregated data.

Number of Empty Days/Weeks, number of days or weeks for which the User Agent and
Server Name Indication aggregated flows have no flow record.

Number of unique locations across all aggregated flow records for the given User Agent
and Server Name Indication pair.

Number of Unique Cities

Approximation of kilometers traveled. This number can be calculated based on the
location.

Aggregated Days. Flows for the corresponding User Agent and the Server Name Indication
are again aggregated based on the part of the week they occurred



Visualization 41

Monday, Tuesday: start of a week
Wednesday, Thursday: mid of a week
Friday: a separate part
Saturday and Sunday: marked as weekend

Aggregated Hours, Approach similar to the point above, however, for hours in the day.

Hour 0-3: marked as night
Hour 4-7: marked as early morning
Hour 8-11: marked as morning
Hour 12-13: marked as lunch
Hour 14-16: marked as after lunch
Hour 17-21: marked as evening
Hour 17-21: marked as night

Dominant Weekpart, based on the above aggregated weekdays, we calculated which part
of the week is dominant.

Dominant Daypart, based on the above aggregated day hours, we calculated which part
of the day is dominant.

The Smallest Distance, which is computed as the smallest distance between two consec-
utive (meant consecutive in connection to time) locations that are not the same (so that it
cannot be 0).

The Biggest Distance, which is the biggest distance between two consecutive locations.

Maybe Server, a field that is simply computed based on the occurrence of the string ”DNS”
or ”Windows NT” in the User Agent.

4.4 Visualization
After we created the Evaluation Function, we could easily filter out those devices that contain,
for example, a lot of unique Locations or limit the number of Locations to a strict number. This
can be particularly helpful in situations when we want to visualize what the dataset looks like
or how the network traffic captured for the particular User Agent looks like. This was exactly
our next step.

4.4.1 Folium Visualization
The first and most simple approach was to start visualizing locations, clusters, and very limited
patterns by using Folium2. Folium is a Python-based library that uses Leaflet3 under the hood.
This visualization may be useful as an initial step before trying to analyze data, as it provides
simple maps with the dots where the user was or as a final product after the full analysis is
performed just to showcase results. We do not believe that this visualization technique was
particularly helpful during the analysis process. Therefore, we mention it only as part of the
process, but we will not draw any conclusions based on this approach.

2https://github.com/python-visualization/folium
3https://leafletjs.com/

https://github.com/python-visualization/folium
https://leafletjs.com/


42 User Agent Model Numbers

4.4.2 Heatmaps
We continued by visualizing using the HeatMap. In Figure 4.1, we can see an example of such
HeatMap. On the Y-axis, there is a weekday with the corresponding hour, on the X-axis we can
see the city or the location where the corresponding User Agent was. Each of the cells in the
HeatMap corresponds to the number of flows at this Location during that time. Another piece
of information that this graph provides is the color of the cell, which changes with the number of
flows. What we think is also important is that during each period, the corresponding User Agent
was in one location or the other but never both at the same time. On one hand side, this cannot
ensure that the User Agent corresponds to only one device moving between Kosice and Presov.
On the other hand, if the User Agent is at the same time at two different locations, it means that
this User Agent probably does not correspond to one user but rather to multiple users. What is
also interesting is that even though the User Agent may not be at different locations at the same
time, the distance between Locations can also provide additional information or invalidation. If
we consider that the Locations are tens or hundreds of kilometers apart and the User Agent was
at one location at one time period and the next hour at the second location, it can also be an
invalidation that this User Agent corresponds to only one device.

Figure 4.1 Heatmap Visualization, with X-axis as Location and Y-axis as Day-Hour pair

The second great visualization that the HeatMap provides is based on the color. In other
words, it can provide the activity of the User Agent. If we look at Figure 4.2 we can see that even
though the User Agent is all of the time at only one Location, we can however see the activity
of the device connecting to the corresponding Server Name Indication.



Visualization 43

Figure 4.2 Heatmap user activity Visualization, with X-axis as Location and Y-axis as Day-Hour
pair

4.4.3 Grid Visualization
The previous visualization technique could help us to find which User Agents can be good
potential adepts to spot some activity. However, the technique does not tell anything about the
patterns. Our next visualization approach aims to look for patterns. We first start by visualizing
using a Grid; then we will continue by trying to obtain additional information from the Grid,
leading to potential pattern matching and extraction.

4.4.3.1 Grid Visualization by day
In Figure 4.3, we can see what the Grid looks like. The idea is that the Y-axis corresponds to a
day of the week. This means that the grid contains 7 rows. The X-axis is composed of weeks.
Each column corresponds to a week. Next, for each cell, the orange color is the default value and
it signals that there is no record in our dataset. The dark color corresponds to location, it is not
important what is the precise location, the important here are potential patterns. Lastly, the
white-colored dot means that there is a collision. This collision can again serve as invalidation;
however, as we can see, the User Agent stays in the same place most of the time, so we should
probably not take it as invalidation, but rather as noise. What we can notice is that the precision
is not great as we have one dot for basically the whole day, in the next Section we are going to
split the days for more detailed information.



44 User Agent Model Numbers

Figure 4.3 Grid visualization with X-axis as week number and Y-axis as week-day. Orange = no
record, Black = record in dataset, White = location collision

4.4.3.2 Grid Visualization by day-hour
Based on the previous Grid visualization shown in Figure 4.3, we were wondering if we could
increase the data the Grid provides. If we think about it, each cell corresponds to one location in
the time. Even though there is often no collision, we can extend this in a way that the day will
also be split into smaller pieces. In Figure 4.4 we can see expanded days. The idea is that the
Y-axis corresponds again to day but this time with an hour group. Days are split into 4 intervals
of 6 hours in length. This means that the grid contains 28 rows. The X-axis is composed again
of weeks. Even though the colors changed the idea is still the same as for Figure 4.3.

Figure 4.4 Grid visualization with X-axis as week number and Y-axis as weekday with additional
hour range. White = no record, Black = record in dataset, Red = location collision

4.4.3.3 Filling Grid Spaces
During the grid visualization, we noticed that we may be able to increase the data contained in
the grid synthetically. This means if a User Agent had at a specific location at some time the
corresponding cell in the grid is colored by a different color than the default color. Then if the
User Agent had the same location at the following cell, but not immediately the next cell but



Finding Patterns Programmatically 45

the cell after, in a vertical meaning, we may try to fill the middle space with the surrounding
color. We need to be careful because by this, we can introduce noise to the data as we modify
the Grid with synthetic inputs, and we may introduce unsubstantiated data. In Figure 4.5 we
can see this adjustment in practice compared to Figure 4.4.

Figure 4.5 Grid visualization with X-axis as week number and Y-axis as weekday with additional
hour range and filled spaces. White = no record, Black = record in dataset, Red = location collision

This visualization provides a quality insight into pattern finding. On the other hand, if there
are a lot of different Server Name Indications with a lot of different locations it may not work.
An example of such a situation can be seen in Figure 4.6, this Grid Map corresponds to the
Windows NT User Agent. We can see that to spot patterns for User Agent and Server Name
Indication pair movement are hardly possible.

4.5 Finding Patterns Programmatically
Based on the visualization in Figure 4.4 or Figure 4.5, we started to think if it would be possible to
find patterns in such a grid programmatically. The patterns, if there are any, do not necessarily
need to be spotted by the eye. Thus, we tried to find patterns programmatically in multiple
ways. Our approach was primarily based on the correlations of shifts with the original layout
and on finding smaller windows in each row with the highest correlations.

4.5.1 Row-wise Autocorrelation with Shift
The first idea is to compute row-wise autocorrelation using shifts. This approach computes
which shift has the highest correlation with the original row. As we previously described, each
row corresponds to a weekday paired with the hour. Then each column corresponds to a week
number. We think that if we shift the whole row by some number it may result in high correlation
as we expect that the behavior of users is repetitive. More precisely, if a device was connecting



46 User Agent Model Numbers

Figure 4.6 Grid visualization example for a lot of records with the correspondence to one device, in
this case Windows NT

from some location on Monday morning, then this location may be repetitive, meaning that the
device is at the same location each Monday morning or every second Monday morning. This
shift should prove it, or at least point it out with a higher correlation number.

In the context of Figure 4.4 the performed shift correlation resulted in the following numbers:

We will not list all of the rows as it would create an extensive listing.

The first and the second row from the top have a correlation of 0.24 and 0.43 respectively,
with the shift of length 9.

The fifth row from the top has a correlation of 0.49 with the shift of length 1.

The eighth row from the top has a correlation of 0.47 with the shift of length 10.

The sixteenth and seventeenth row from the top correlates 0.47 and 0.37 respectively, with
the shift of length 4.

We also performed the same shift correlation on Figure 4.5, which, however, did not provide
any significant difference compared to the correlation from Figure 4.4.

4.5.2 Window matching with correlation
Our next approach was to correlate windows of all sizes. This approach is also row-wise, however
instead of shifting the whole row and computing correlation with the original row. We started
by creating the smallest possible windows to the highest possible ones i.e. row length. These
windows are created in such a manner that, for example, for window length 3, we went through
the whole row and found all possible windows of length 3. Then we tried to move through
the whole row again with this window and compute how much the window correlates with the



Discussion 47

position, the part where the window was initially found was skipped as this would artificially
increase the correlation. This iteration created multiple correlation numbers, from which we
then computed the average correlation and median correlation for a particular window. Lastly,
based on the average correlation or median correlation we could choose which window matches
the best for the whole grind or for only the row.

In the following Figure 4.7 we can see the most correlated windows based on the median
correlation 0.13 from the first row from the top for the grid in Figure 4.4 and we got the same
result also for the grid in Figure 4.5.

Figure 4.7 The most correlated window for the first row based on the median

Continuing with the second example in Figure 4.8 we got the best window for the fifth row
with an average correlation of 0.20 and a median correlation of 0.26. This window is also common
for both Figure 4.4 and Figure 4.5.

Figure 4.8 The most correlated window for the fifth row based on the median

On the other hand, apart from the previous example, in Figure 4.9 we can see a window that
is not common for Figure 4.4 and Figure 4.5, more precisely, this window was only found in the
Figure 4.5 which contains filled spaces between corresponding locations in respect to the Y-axis,
on the other hand the Figure 4.4 does not contain any window in this row that has median
correlation higher than 0.

Figure 4.9 The most correlated window for the first row in the grid visualization with filled spaces
based on the median

4.6 Discussion
Our final thought for the uniqueness of the User Agent and Server Name Indication pair is that
for the older devices that use older versions of Android (in this case, we can talk about Android
6). It may be possible to investigate location changes and behavior of the user during the day,
across broader time horizons, and, for example, provide advertisements based on the User’s online
activity or location. On the other hand, as we said in Section 4.1, we have no options, and also
we did not try to map the patterns and behavior to the specific users. We also believe that the
analysis of patterns can be extended in more detail. During the pattern matching analysis, we
only applied simple strategies to identify patterns. For example, as developments in machine



48 User Agent Model Numbers

learning and artificial intelligence progress, we believe that more sophisticated techniques from
this field can be used to perform better and deeper analysis of patterns. Although the User
Agent field is marked as deprecated and is starting to disappear from the Initial packets of
the QUIC Protocol, it will definitely remain available for some time, especially on older devices.
Furthermore, knowledge of this hypothetical tracking opportunity also provides insight into what
was possible during times when User Agents were more commonly used. ‘



Conclusion

Within this work, we managed to create the QUIC plugin for the IPFIXProbe flow exporting
tool, which can decrypt and extract TLS and QUIC-specific fields from the Initial Packets of the
QUIC communication.

Based on the plugin, the Dataset consisting of several weeks was created, moreover, part of
the Dataset was made publicly available in the journal publication CESNET-QUIC22: A large
one-month QUIC network traffic dataset from backbone lines [21].

In the later stages of the thesis, we performed an analysis on the created dataset. The
analysis essentially consists of two parts. The first part discusses the initial analysis and insights
into the created dataset, focusing specifically on the User Agent and Server Name Indication
fields. We evaluated the state of the dataset, identifying the most common User Agents, Server
Name Indications, and also included the most common QUIC Versions. The second part of
the analysis involves a deeper dive into the User Agent field. Although this field is marked
as deprecated, it still appears in the captured flows. The User Agent field not only contains
the used Chrome Version but also includes the Model Numbers of devices. Based on this, we
formulated a hypothesis that the field, enriched by the Server Name Indication, can provide a
unique identifier for a captured flow. We believe that this can open doors to location and activity
tracking, especially for older devices that are not so common in the dataset.

The output of our work can be definitively split into two major contributions. Firstly, the
QUIC plugin for the IPFIXProbe flow exporter can be freely used on high-speed networks.
Although the Initial Packets of the QUIC protocol are marked as encrypted, we, and also other
researchers, can now look into these Initial Packets and perform analyses on the fields contained
within. This is supported by a recently merged Pull Request to IPFIXProbe4 by our colleagues
from Germany who were interested in extending the QUIC plugin with additional fields as seen
in the Pull Request.

Secondly, the proposed hypothesis regarding the User Agent and Server Name Indication as
unique identifiers can also be extended, and the analysis can be performed on a larger dataset
with more sophisticated pattern-matching techniques. As also shown in Chapter3, there are still
plenty of flows that contain the User Agent field, and we believe that it will take some time for
this field to completely disappear.

4https://github.com/CESNET/ipfixprobe/pull/194

49

https://github.com/CESNET/ipfixprobe/pull/194


50 User Agent Model Numbers



Bibliography

1. ROSKIND, Jim. MULTIPLEXED STREAM TRANSPORT OVER UDP [Working Draft].
2012-04. Internet-Draft. Available also from: https://docs.google.com/document/d/
1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit. [cit. 2021-04-25].

2. ROSKIND, Jim. Experimenting with QUIC. 2013-06. Online. Available also from: https:
//blog.chromium.org/2013/06/experimenting-with-quic.html. [cit. 2021-04-25].

3. SIMON, Sergio De. Google Will Propose QUIC As IETF Standard. 2015-04. Online. Avail-
able also from: https://www.infoq.com/news/2015/04/google-quic-ietf-standard/.
[cit. 2021-04-25].

4. IYENGAR, Janardhan; THOMSON, Martin. QUIC: A UDP-Based Multiplexed and Secure
Transport [Working Draft]. 2016-11. Internet-Draft, draft-ietf-quic-transport-00. IETF Sec-
retariat. Available also from: https://datatracker.ietf.org/doc/html/draft-ietf-
quic-transport-00. [cit. 2021-04-25].

5. IYENGAR, Jana; THOMSON, Martin. QUIC: A UDP-Based Multiplexed and Secure Trans-
port [RFC 9000]. RFC Editor, 2021. Request for Comments, no. 9000. Available from doi:
10.17487/RFC9000.

6. CIMPANU, Catalin. HTTP-over-QUIC to be renamed HTTP/3. 2018-11. Online. Available
also from: https://www.zdnet.com/article/http-over-quic-to-be-renamed-http3/.
[cit. 2021-04-25].

7. RODRIGUEZ, Luis. The Future of the Internet is Here: QUIC Protocol and HTTP/3.
Medium. 2024. Available also from: https://medium.com/@luisrodri/the-future-of-
the-internet-is-here-quic-protocol-and-http-3-d7061adf424f.

8. THOMSON, Martin; TURNER, Sean. Using TLS to Secure QUIC [RFC 9001]. RFC Editor,
2021. Request for Comments, no. 9001. Available from doi: 10.17487/RFC9001.

9. RESCORLA, Eric. The Transport Layer Security (TLS) Protocol Version 1.3 [RFC 8446].
RFC Editor, 2018. Request for Comments, no. 8446. Available from doi: 10 . 17487 /
RFC8446.

10. IYENGAR, Jana; THOMSON, Martin. QUIC: A UDP-Based Multiplexed and Secure Trans-
port [Working Draft]. 2021. Internet-Draft, draft-ietf-quic-transport-34. IETF Secretariat.
Available also from: http : / / www . ietf . org / internet - drafts / draft - ietf - quic -
transport-34.txt. [cit. 2021-04-25].

11. MCGREW, David. An Interface and Algorithms for Authenticated Encryption [RFC 5116].
RFC Editor, 2008. Request for Comments, no. 5116. Available from doi: 10 . 17487 /
RFC5116.

51

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://www.infoq.com/news/2015/04/google-quic-ietf-standard/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://doi.org/10.17487/RFC9000
https://www.zdnet.com/article/http-over-quic-to-be-renamed-http3/
https://medium.com/@luisrodri/the-future-of-the-internet-is-here-quic-protocol-and-http-3-d7061adf424f
https://medium.com/@luisrodri/the-future-of-the-internet-is-here-quic-protocol-and-http-3-d7061adf424f
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-34.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-34.txt
https://doi.org/10.17487/RFC5116
https://doi.org/10.17487/RFC5116


52 Bibliography

12. GAGLIARDI, Eva; LEVILLAIN, Olivier. Analysis of QUIC Session Establishment and Its
Implementations. Information Security Theory and Practice Lecture Notes in Computer
Science. 2019, pp. 169–184. Available also from: https://hal.archives-ouvertes.fr/
hal-02468596/document. [cit. 2021-04-25].

13. KRAWCZYK, Dr. Hugo; ERONEN, Pasi. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF) [RFC 5869]. RFC Editor, 2010. Request for Comments, no. 5869.
Available from doi: 10.17487/RFC5869.

14. BLAKE-WILSON, Simon; MIKKELSEN, Jan; NYSTRÖM, Magnus; HOPWOOD, David;
WRIGHT, Tim. Transport Layer Security (TLS) Extensions [RFC 3546]. RFC Editor, 2003.
Request for Comments, no. 3546. Available from doi: 10.17487/RFC3546.

15. FIELDING, Roy T.; RESCHKE, Julian. Hypertext Transfer Protocol (HTTP/1.1): Seman-
tics and Content [RFC 7231]. RFC Editor, 2014. Request for Comments, no. 7231. Available
from doi: 10.17487/RFC7231.

16. CLAISE, B.; TRAMMELL, B.; AITKEN, P. Specification of the IP Flow Information Ex-
port (IPFIX) Protocol for the Exchange of Flow Information [Internet Requests for Com-
ments]. RFC Editor, 2013-09. STD, 77. RFC Editor. issn 2070-1721. Available also from:
http://www.rfc-editor.org/rfc/rfc7011.txt. [cit. 2021-04-25].

17. CLAISE, B. Specification of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of IP Traffic Flow Information [Internet Requests for Comments]. RFC Editor,
2008-01. RFC, 5101. RFC Editor. issn 2070-1721. Available also from: http://www.rfc-
editor.org/rfc/rfc5101.txt. [cit. 2021-04-25].

18. IANA. IP Flow Information Export (IPFIX) Entities. 2007-05. Online. Available also from:
https://www.iana.org/assignments/ipfix/ipfix.xml. [cit. 2021-04-25].

19. YANG, Feng. The tale of deep packet inspection in China: Mind the gap. In: 2015 3rd
International Conference on Information and Communication Technology (ICoICT). 2015,
pp. 348–351. Available from doi: 10.1109/ICoICT.2015.7231449. [cit. 2021-04-25].

20. THOMSON, Martin; TURNER, Sean. Using TLS to Secure QUIC. Internet Engineering
Task Force, 2020-10. Internet-Draft, draft-ietf-quic-tls-32. Internet Engineering Task Force.
Available also from: https://datatracker.ietf.org/doc/draft-ietf-quic-tls/32/.
Work in Progress.

21. LUXEMBURK, Jan; HYNEK, Karel; ČEJKA, Tomáš; LUKAČOVIČ, Andrej; ŠIŠKA,
Pavel. CESNET-QUIC22: A large one-month QUIC network traffic dataset from back-
bone lines. Data in Brief. 2023, vol. 46, p. 108888. issn 2352-3409. Available from doi:
https://doi.org/10.1016/j.dib.2023.108888.

22. IYENGAR, Jana; THOMSON, Martin. QUIC: A UDP-Based Multiplexed and Secure Trans-
port. Internet Engineering Task Force, 2020-06. Internet-Draft, draft-ietf-quic-transport-29.
Internet Engineering Task Force. Available also from: https://datatracker.ietf.org/
doc/draft-ietf-quic-transport/29/. Work in Progress.

https://hal.archives-ouvertes.fr/hal-02468596/document
https://hal.archives-ouvertes.fr/hal-02468596/document
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC3546
https://doi.org/10.17487/RFC7231
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc5101.txt
http://www.rfc-editor.org/rfc/rfc5101.txt
https://www.iana.org/assignments/ipfix/ipfix.xml
https://doi.org/10.1109/ICoICT.2015.7231449
https://datatracker.ietf.org/doc/draft-ietf-quic-tls/32/
https://doi.org/https://doi.org/10.1016/j.dib.2023.108888
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/29/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/29/


Contents of attached medium

dataset.............................used data that does not include personal information
quic-dataset.pickle.............................dataset output of the QUIC Plugin

src
plugin..........................................source code of resulting QUIC Plugin

quic.cpp ..........................................IPFIXProbe plugin header file
quic.hpp .......................................... IPFIXProbe plugin source file
quic parser.cpp ........................... header file for the QUIC parsing logic
quic parser.hpp ............................source file for the QUIC parsing logic

analysis........................................... source codes used during analysis
ipinfo-script.ipynb .......................source code for obtaining IPInfo data
quic-analysis.ipynb ..........................source code for performed analysis

thesis......................................................LATEX thesis source code
text.........................................................................thesis text

thesis.pdf.....................................................PDF format of thesis
readme.txt.....................................................overview of the contents

53


	Acknowledgments
	Declaration
	Abstract
	Abbreviation List
	Introduction
	State of the Art
	QUIC Protocol
	Connection
	Handshake
	Packets
	Packet protection
	Frames
	Stream
	Advantages of the QUIC Protocol

	QUIC-TLS
	Server Name Indication
	User Agent

	Network monitoring
	Flow monitoring
	Deep packet inspection


	IPFIXProbe QUIC Plugin
	Variable-Length Integer Encoding
	Version specific Initial Salt
	Initial Packet Filter
	Extract Header Fields
	Initial Secrets Derivation
	Client Initial Secret
	AES-GCM Initial Secrets
	Header Protection secret

	Reverting Header Protection
	Sample Encryption
	Packet Number Length
	Packet Number

	Reverting Packet Protection
	Assemble Packet Payload
	Obtain TLS Data
	Finalized Plugin
	Dataset


	Analysis
	State of the Dataset
	User Agents
	Server Name Indications
	QUIC Version
	Conclusion

	User Agent Model Numbers
	Dataset Preparation
	Aggregating flows
	User Agent and Location
	User Agent as Unique Identifier
	User Agent and SNI as Unique Identifier

	Evaluation Function
	Visualization
	Folium Visualization
	Heatmaps
	Grid Visualization

	Finding Patterns Programmatically
	Row-wise Autocorrelation with Shift
	Window matching with correlation

	Discussion

	Conclusion
	Contents of attached medium

